Requirement of a plasmid-encoded catalase for survival of Rhizobium etli CFN42 in a polyphenol-rich environment.
نویسندگان
چکیده
Nitrogen-fixing bacteria collectively called rhizobia are adapted to live in polyphenol-rich environments. The mechanisms that allow these bacteria to overcome toxic concentrations of plant polyphenols have not been clearly elucidated. We used a crude extract of polyphenols released from the seed coat of the black bean to simulate a polyphenol-rich environment and analyze the response of the bean-nodulating strain Rhizobium etli CFN42. Our results showed that the viability of the wild type as well as that of derivative strains cured of plasmids p42a, p42b, p42c, and p42d or lacking 200 kb of plasmid p42e was not affected in this environment. In contrast, survival of the mutant lacking plasmid p42f was severely diminished. Complementation analysis revealed that the katG gene located on this plasmid, encoding the only catalase present in this bacterium, restored full resistance to testa polyphenols. Our results indicate that oxidation of polyphenols due to interaction with bacterial cells results in the production of a high quantity of H(2)O(2), whose removal by the katG-encoded catalase plays a key role for cell survival in a polyphenol-rich environment.
منابع مشابه
Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species.
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not onl...
متن کاملOnly one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon.
The plasmid-borne Rhizobium etli katG gene encodes a dual-function catalase-peroxidase (KatG) (EC 1.11.1.7) that is inducible and heat-labile. In contrast to other rhizobia, katG was shown to be solely responsible for catalase and peroxidase activity in R. etli. An R. etli mutant that did not express catalase activity exhibited increased sensitivity to hydrogen peroxide (H(2)O(2)). Pre-exposure...
متن کاملCharacterization of IntA, a bidirectional site-specific recombinase required for conjugative transfer of the symbiotic plasmid of Rhizobium etli CFN42.
Site-specific recombination occurs at short specific sequences, mediated by the cognate recombinases. IntA is a recombinase from Rhizobium etli CFN42 and belongs to the tyrosine recombinase family. It allows cointegration of plasmid p42a and the symbiotic plasmid via site-specific recombination between attachment regions (attA and attD) located in each replicon. Cointegration is needed for conj...
متن کاملFunction of the Rhizobium etli CFN42 nirK gene in nitrite metabolism.
Rhizobium etli CFN42 is not capable of growing anaerobically with nitrate but it grows with nitrite as a terminal electron acceptor. This bacterium contains the nirK gene encoding the copper-containing Nir (nitrite reductase), which is located on the cryptic plasmid pCFN42f. Mutational analysis has demonstrated that a nirK deficient mutant was not capable of growing under nitrite-respiring cond...
متن کاملRhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background.
Plasmids have played a major role in bacterial evolution, mainly by their capacity to perform horizontal gene transfer (HGT). Their conjugative transfer (CT) properties are usually described in terms of the plasmid itself. In this work, we analyzed structural and functional aspects of the CT of pLPU83a, an accessory replicon from Rhizobium sp. LPU83, able to transfer from its parental strain, f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 74 8 شماره
صفحات -
تاریخ انتشار 2008