Deficiency of the zinc finger protein ZPR1 causes neurodegeneration.
نویسندگان
چکیده
Mutations that cause reduced expression of the full-length Survival Motor Neurons (SMN) protein are a major cause of spinal muscular atrophy (SMA), a disease characterized by degeneration of the alpha-motor neurons in the anterior horn of the spinal cord. The severity of SMA may be influenced by the actions of modifier genes. One potential modifier gene is represented by ZPR1, which is down-regulated in patients with SMA and encodes a zinc finger protein that interacts with complexes formed by SMN. To test the functional significance of ZPR1 gene down-regulation, we examined a mouse model with targeted ablation of the Zpr1 gene. We report that ZPR1-deficient mice exhibit axonal pathology and neurodegeneration. These data identify ZPR1 deficiency as a contributing factor in neurodegenerative disorders.
منابع مشابه
The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy.
Spinal muscular atrophy (SMA) is caused by mutation of the Survival Motor Neurons 1 (SMN1) gene and is characterized by degeneration of spinal motor neurons. The severity of SMA is primarily influenced by the copy number of the SMN2 gene. Additional modifier genes that lie outside the SMA locus exist and one gene that could modify SMA is the Zinc Finger Protein (ZPR1) gene. To test the signific...
متن کاملThe cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells.
The zinc finger protein ZPR1 translocates from the cytoplasm to the nucleus after treatment of cells with mitogens. The function of nuclear ZPR1 has not been defined. Here we demonstrate that ZPR1 accumulates in the nucleolus of proliferating cells. The role of ZPR1 was examined using a gene disruption strategy. Cells lacking ZPR1 are not viable. Biochemical analysis demonstrated that the loss ...
متن کاملZPR1 is essential for survival and is required for localization of the survival motor neurons (SMN) protein to Cajal bodies.
Mutation of the survival motor neurons 1 (SMN1) gene causes motor neuron apoptosis and represents the major cause of spinal muscular atrophy in humans. Biochemical studies have established that the SMN protein plays an important role in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and that the SMN complex can interact with the zinc finger protein ZPR1. Here we report that tar...
متن کاملStructural insights into the interaction of the evolutionarily conserved ZPR1 domain tandem with eukaryotic EF1A, receptors, and SMN complexes.
Eukaryotic genomes encode a zinc finger protein (ZPR1) with tandem ZPR1 domains. In response to growth stimuli, ZPR1 assembles into complexes with eukaryotic translation elongation factor 1A (eEF1A) and the survival motor neurons protein. To gain insight into the structural mechanisms underlying the essential function of ZPR1 in diverse organisms, we determined the crystal structure of a ZPR1 d...
متن کاملDrosophila Zpr1 (Zinc Finger Protein 1) Is Required Downstream of Both EGFR And FGFR Signaling in Tracheal Subcellular Lumen Formation
The cellular and molecular cues involved in creating branched tubular networks that transport liquids or gases throughout an organism are not well understood. To identify factors required in branching and lumen formation of Drosophila tracheal terminal cells, a model for branched tubular networks, we performed a forward genetic-mosaic screen to isolate mutations affecting these processes. From ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 19 شماره
صفحات -
تاریخ انتشار 2006