Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration.
نویسندگان
چکیده
Intracranial electroencephalography (iEEG) is clinically indicated for medically refractory epilepsy and is a promising approach for developing neural prosthetics. These recordings also provide valuable data for cognitive neuroscience research. Accurate localization of iEEG electrodes is essential for evaluating specific brain regions underlying the electrodes that indicate normal or pathological activity, as well as for relating research findings to neuroimaging and lesion studies. However, electrodes are frequently tucked underneath the edge of a craniotomy, inserted via a burr hole, or placed deep within the brain, where their locations cannot be verified visually or with neuronavigational systems. We show that one existing method, registration of postimplant computed tomography (CT) with preoperative magnetic resonance imaging (MRI), can result in errors exceeding 1cm. We present a novel method for localizing iEEG electrodes using routinely acquired surgical photographs, X-ray radiographs, and magnetic resonance imaging scans. Known control points are used to compute projective transforms that link the different image sets, ultimately allowing hidden electrodes to be localized, in addition to refining the location of manually registered visible electrodes. As the technique does not require any calibration between the different image modalities, it can be applied to existing image databases. The final result is a set of electrode positions on the patient's rendered MRI yielding locations relative to sulcal and gyral landmarks on individual anatomy, as well as MNI coordinates. We demonstrate the results of our method in eight epilepsy patients implanted with electrode grids spanning the left hemisphere.
منابع مشابه
Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera
The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typic...
متن کاملThree-dimensional visualization of subdural electrodes for presurgical planning.
BACKGROUND Accurate localization and visualization of subdural electrodes implanted for intracranial electroencephalography in cases of medically refractory epilepsy remains a challenging clinical problem. OBJECTIVE We introduce a technique for creating accurate 3-dimensional (3D) brain models with electrode overlays, ideal for resective surgical planning. METHODS Our procedure uses postimp...
متن کاملAn open-source automated platform for three-dimensional visualization of subdural electrodes using CT-MRI coregistration.
OBJECTIVE Visualizing implanted subdural electrodes in three-dimensional (3D) space can greatly aid in planning, executing, and validating resection in epilepsy surgery. Coregistration software is available, but cost, complexity, insufficient accuracy, or validation limit adoption. We present a fully automated open-source application, based on a novel method using postimplant computerized tomog...
متن کاملRegistering imaged ECoG electrodes to human cortex: A geometry-based technique.
BACKGROUND The accurate localization of implanted ECoG electrodes over the brain is of critical importance to invasive diagnostic work-up for the surgical treatment of intractable epileptic seizures. The implantation of subdural electrodes is an invasive procedure which typically introduces non-uniform deformations of a subject's brain, increasing the difficulty of determining the precise locat...
متن کاملiELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data.
BACKGROUND Intracranial electrical recordings (iEEG) and brain stimulation (iEBS) are invaluable human neuroscience methodologies. However, the value of such data is often unrealized as many laboratories lack tools for localizing electrodes relative to anatomy. To remedy this, we have developed a MATLAB toolbox for intracranial electrode localization and visualization, iELVis. NEW METHOD: iELVi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 174 1 شماره
صفحات -
تاریخ انتشار 2008