Genome-wide profiles of H2AX and γ-H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells
نویسندگان
چکیده
Phosphorylation of the histone variant H2AX forms γ-H2AX that marks DNA double-strand break (DSB). Here, we generated the sequencing-based maps of H2AX and γ-H2AX positioning in resting and proliferating cells before and after ionizing irradiation. Genome-wide locations of possible endogenous and exogenous DSBs were identified based on γ-H2AX distribution in dividing cancer cells without irradiation and that in resting cells upon irradiation, respectively. γ-H2AX-enriched regions of endogenous origin in replicating cells included sub-telomeres and active transcription start sites, apparently reflecting replication- and transcription-mediated stress during rapid cell division. Surprisingly, H2AX itself, prior to phosphorylation, was specifically located at these endogenous hotspots. This phenomenon was only observed in dividing cancer cells but not in resting cells. Endogenous H2AX was concentrated on the transcription start site of actively transcribed genes but was irrelevant to pausing of RNA polymerase II (pol II), which precisely coincided with γ-H2AX of endogenous origin. γ-H2AX enrichment upon irradiation also coincided with actively transcribed regions, but unlike endogenous γ-H2AX, it extended into the gene body and was not specifically concentrated on the pausing site of pol II. Sub-telomeres were less responsive to external DNA damage than to endogenous stress. Our findings provide insight into DNA repair programs of cancer and may have implications for cancer therapy.
منابع مشابه
Genome-wide profiles of H2AX and c-H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells
Phosphorylation of the histone variant H2AX forms c-H2AX that marks DNA double-strand break (DSB). Here, we generated the sequencing-based maps of H2AX and c-H2AX positioning in resting and proliferating cells before and after ionizing irradiation. Genome-wide locations of possible endogenous and exogenous DSBs were identified based on c-H2AX distribution in dividing cancer cells without irradi...
متن کاملExpression of phosphorylated histone H2AX in blood lymphocytes of patients undergoing angiographic procedures following exposure to X‐rays
Introduction: Coronary angiography is a Diagnostic-Therapeutic method involving ionizing radiation. This method causes to DNA damage with form double stranded breaks which is followed by the phosphorylation of the histone, H2AX. H2AX is a key factor in the repair process of damaged DNA which will accumulate to damage sites. In human cells, H2AX constitutes about 10% of the H2A ...
متن کاملPoor Understanding of Radiation Profiles in Deep Space Causes Inaccurate Findings and Misleading Conclusions
The radiation environment in deep space, where astronauts are behind the shelter provided by the Earth’s magnetosphere, is a major health concern. Galactic cosmic rays (GCR) and solar particle events (SPE) are two basic sources of space radiation in the solar system. The health risks of exposure to high levels of space radiation can be observed either as acute and delayed effects. Zhang et al. ...
متن کاملQuantitation of genome damage and transcriptional profile of DNA damage response genes in human peripheral blood mononuclear cells exposed in vitro to low doses of neutron radiation
Background: Humans are exposed to ionizing radiation from different sources that include natural, occupational, medical, accidental exposures. Evaluation of the effect of low level of neutron exposure to human cells in vitro has important implications to human health. Attempts were made to measure genome damage, transcriptional profile of DNA damage response and repair genes in peripheral blood...
متن کاملDNA Damages on Blood Cells After Cardiac Magnetic Resonance Imaging
Introduction: Along with the increased use of cardiac imaging at clinics there is increased attention to the potential risks related to the methods used like magnetic resonance (MR) and it cannot be ruled out that MR can alter DNA structure. The aim of this review is to assess the impact of routine cardiac magnetic resonance (CMR) scanning on DNA damages in human T lymphocytes....
متن کامل