Liganded and unliganded activation of estrogen receptor and hormone replacement therapies.
نویسنده
چکیده
Over the past two decades, our understanding of estrogen receptor physiology in mammals widened considerably as we acquired a deeper appreciation of the roles of estrogen receptor alpha and beta (ERα and ERβ) in reproduction as well as in bone and metabolic homeostasis, depression, vascular disorders, neurodegenerative diseases and cancer. In addition, our insights on ER transcriptional functions in cells increased considerably with the demonstration that ER activity is not strictly dependent on ligand availability. Indeed, unliganded ERs may be transcriptionally active and post-translational modifications play a major role in this context. The finding that several intracellular transduction molecules may regulate ER transcriptional programs indicates that ERs may act as a hub where several molecular pathways converge: this allows to maintain ER transcriptional activity in tune with all cell functions. Likely, the biological relevant role of ER was favored by evolution as a mean of integration between reproductive and metabolic functions. We here review the post-translational modifications modulating ER transcriptional activity in the presence or in the absence of estrogens and underline their potential role for ER tissue-specific activities. In our opinion, a better comprehension of the variety of molecular events that control ER activity in reproductive and non-reproductive organs is the foundation for the design of safer and more efficacious hormone-based therapies, particularly for menopause. This article is part of a Special Issue entitled: Translating Nuclear receptors from health to disease.
منابع مشابه
Unliganded and liganded estrogen receptors protect against cancer invasion via different mechanisms.
While estrogens are mitogenic in breast cancer cells, the presence of estrogen receptor a (ERalpha) clinically indicates a favorable prognosis in breast carcinoma. To improve our understanding of ERalpha action in breast cancer, we used an original in vitro method, which combines transient transfection and Matrigel invasion assays to examine its effects on cell invasiveness. ERalpha expression ...
متن کاملThe ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen.
In sporadic breast cancers, BRCA-1 expression is down-regulated in the absence of mutations in the BRCA-1 gene. This suggests that disruption of BRCA-1 expression may contribute to the onset of mammary tumors. Environmental contaminants found in industrial pollution, tobacco smoke, and cooked foods include benzo(a)pyrene [B(a)P] and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which have been sh...
متن کاملInfluence of Steroid Hormone Signaling on Life Span Control by Caenorhabditis elegans Insulin-Like Signaling
Sterol-sensing nuclear receptors and insulin-like growth factor signaling play evolutionarily conserved roles in the control of aging. In the nematode Caenorhabditis elegans, bile acid-like steroid hormones known as dafachronic acids (DAs) influence longevity by binding to and regulating the activity of the conserved nuclear receptor DAF-12, and the insulin receptor (InsR) ortholog DAF-2 contro...
متن کاملThe control of the interaction of sex hormone-binding globulin with its receptor by steroid hormones.
Sex hormone-binding globulins (SHBG) is a plasma glycoprotein that binds certain steroids. It, in turn, binds to a specific receptor on cell membranes. This work was undertaken to investigate the role of steroids in the interaction of SHBG with its receptor. Because the probe for the interaction of SHBG with its receptor is 125I-SHBG, we first showed that 125I-SHBG binds [3H]dihydrotestosterone...
متن کاملTwo distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators.
NSD1, a novel 2588 amino acid mouse nuclear protein that interacts directly with the ligand-binding domain (LBD) of several nuclear receptors (NRs), has been identified and characterized. NSD1 contains a SET domain and multiple PHD fingers. In addition to these conserved domains found in both positive and negative Drosophila chromosomal regulators, NSD1 contains two distinct NR interaction doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1812 8 شماره
صفحات -
تاریخ انتشار 2011