Low-threshold transient calcium current in rat hippocampal lacunosum-moleculare interneurons: kinetics and modulation by neurotransmitters.
نویسندگان
چکیده
Interneurons from the CA1 lacunosum-moleculare (L-M) region were isolated by trypsin-hyaluronidase treatment and mechanical trituration of the L-M. Interneurons isolated in this manner were multipolar with several dendritic processes and could be distinguished from CA1 pyramidal neurons. The properties of a low-threshold transient (LTT) Ca2+ current were investigated using whole-cell voltage-clamp techniques. The activation threshold of the LTT Ca2+ current was -60 mV, and the peak current, 100 +/- 9 pA (mean +/- SEM; n = 15), was observed at -30 mV. Ca2+ was the predominant charge carrier because the current was not affected by tetrodotoxin and was abolished in Ca(2+)-free external solution. Steady state inactivation was observed when the holding potential was positive to -100 mV, and the current was half-inactivated at -84 mV. Complete inactivation occurred at a holding potential of -60 mV. The time-to-peak of the current was highly voltage dependent and ranged from 10 msec at -60 mV to 4 msec at 0 mV. The time constant of inactivation was also voltage dependent and ranged from 27 msec at -60 mV to 12 msec at greater than -30 mV. Recovery from inactivation to 90% of maximum current occurred within 200 msec. L-M interneurons receive synaptic inputs from the septum that release ACh or GABA and from the raphe nuclei that release 5-HT. Carbachol, a nonhydrolyzable cholinergic agonist, and 5-HT quickly and reversibly increased the amplitude of the LTT Ca2+ current. Carbachol's actions were blocked by atropine, indicating that this effect was mediated by muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Properties of a calcium-activated K(+) current on interneurons in the developing rat hippocampus.
Calcium-activated potassium currents have an essential role in regulating excitability in a variety of neurons. Although it is well established that mature CA1 pyramidal neurons possess a Ca(2+)-activated K(+) conductance (I(K(Ca))) with early and late components, modulation by various endogenous neurotransmitters, and sensitivity to K(+) channel toxins, the properties of I(K(Ca)) on hippocampa...
متن کاملIntrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare.
The ionic conductances underlying membrane potential oscillations of hippocampal CA1 interneurons located near the border between stratum lacunosum-moleculare and stratum radiatum (LM) were investigated using whole cell current-clamp recordings in rat hippocampal slices. At 22 degrees C, when LM cells were depolarized near spike threshold by current injection, 91% of cells displayed 2-5 Hz osci...
متن کاملRole of ionotropic glutamate receptors in long-term potentiation in rat hippocampal CA1 oriens-lacunosum moleculare interneurons.
Some interneurons of the hippocampus exhibit NMDA receptor-independent long-term potentiation (LTP) that is induced by presynaptic glutamate release when the postsynaptic membrane potential is hyperpolarized. This "anti-Hebbian" form of LTP is prevented by postsynaptic depolarization or by blocking AMPA and kainate receptors. Although both AMPA and kainate receptors are expressed in hippocampal...
متن کاملAgent-selective effects of volatile anesthetics on GABAA receptor-mediated synaptic inhibition in hippocampal interneurons.
BACKGROUND A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal cells in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role for the maintenance of anesthesia. The aim of this study was to compare effects produced by volatile anesthetics on inhibitory posts...
متن کاملSerotonin Attenuates Feedback Excitation onto O-LM Interneurons.
The serotonergic system is a subcortical neuromodulatory center that controls cortical information processing in a state-dependent manner. In the hippocampus, serotonin (5-HT) is released by ascending serotonergic fibers from the midbrain raphe nuclei, thereby mediating numerous modulatory functions on various neuronal subtypes. Here, we focus on the neuromodulatory effects of 5-HT on GABAergic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 9 شماره
صفحات -
تاریخ انتشار 1991