Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus.
نویسندگان
چکیده
Computer simulations showed that the elastic modulus of the cell layer relative to the elastic modulus of the extracellular layers predicted the effectiveness of different force-generating mechanisms for sea urchin primary invagination [L. A. Davidson, M. A. R. Koehl, R. Keller, and G. F. Oster (1995) Development 121, 2005-2018]. Here, we measured the composite elastic modulus of the cellular and extracellular matrix layers in the blastula wall of Strongylocentrotus purpuratus embryos at the mesenchyme blastula stage. Combined, these two layers exhibit a viscoelastic response with an initial stiffness ranging from 600 to 2300 Pa. To identify the cellular structures responsible for this stiffness we disrupted these structures and correlated the resulting lesions to changes in the elastic modulus. We treated embryos with cytochalasin D to disrupt the actin-based cytoskeleton, nocodazole to disrupt the microtubule-based cytoskeleton, and a gentle glycine extraction to disrupt the apical extracellular matrix (ECM). Embryos treated less than 60 min in cytochalasin D showed no change in their time-dependent elastic modulus even though F-actin was severely disrupted. Similarly, nocodazole had no effect on the elastic modulus even as the microtubules were severely disrupted. However, glycine extraction resulted in a 40 to 50% decrease in the elastic modulus along with a dramatic reduction in the hyalin protein at the apical ECM, thus implicating the apical ECM as a major mechanical component of the blastula wall. This finding bears on the mechanical plausibility of several models for primary invagination.
منابع مشابه
Isolation of homologous nuclear DNAs from sea-urchin embryos.
Studies are presented on the ability of low-molecular-weight nuclear DNA fractions to hybridize to higher-molecular-weight nuclear DNAs taken from different stages of early developing sea-urchin embryos, Strongylocentrotus purpuratus. Using preparative DNA-DNA hybridization, a fraction of 60-s mid-blastula DNA was isolated for its ability to anneal to 10-s morula DNA. Approximately 80 regions o...
متن کاملSphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus.
We have sequenced the Sphedgehog (Sphh) gene from the sea urchin Strongylocentrotus purpuratus. Sphh transcripts are detected first at the mesenchyme blastula stage, and they accumulate throughout early embryogenesis. The Sphh protein is produced by precursor pigment cells during early and midgastrulation. NiCl2 inhibits pigment cell differentiation in sea urchins. Here, we show that, in S. pur...
متن کاملDevelopmental time, cell lineage, and environment regulate the newly synthesized proteins in sea urchin embryos.
Strongylocentrotus purpuratus embryos were fractionated into two cell populations of defined lineages at times corresponding to two critical developmental events: determination (16-cell stage) and early differentiation (mesenchyme blastula). The 16-cell stage blastomeres, labeled with [35S]methionine, exhibited identical protein synthesis patterns by fluorography, and this pattern was not signi...
متن کاملCloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus
Wnt proteins and their receptors, members of the frizzled protein family, play a key role in regulating a wide range of developmental processes. Recently, putative regulators of Wnt signaling known as secreted frizzled-related proteins (SFRPs) have been identified in several vertebrates. Here, we describe the cloning of a novel SFRP (suSFRP1) from the sea urchin, Strongylocentrotus purpuratus. ...
متن کاملThe role of lysyl oxidase and collagen crosslinking during sea urchin development.
Lysyl oxidase, the only enzyme involved in collagen crosslinking, is shown to be present in embryos of the sea urchin Strongylocentrotus purpuratus. The enzyme specific activity increases over six-fold during development, showing the greatest rise during gastrulation and prism larva formation. The enzyme is inhibited by the specific inhibitor, beta-aminoproprionitrile (BAPN). Continuous BAPN tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 209 2 شماره
صفحات -
تاریخ انتشار 1999