A prioritized and adaptive approach to volumetric seeded region growing using texture descriptors
نویسندگان
چکیده
The performance of segmentation algorithms often depends on numerous parameters such as initial seed and contour placement, threshold selection, and other region-dependent a priori knowledge. While necessary for successful segmentation, appropriate setting of these parameters can be difficult to achieve and requires a user experienced with the algorithm and knowledge of the application field. In order to overcome these difficulties, we propose a prioritized and adaptive volumetric region growing algorithm which will automatically segment a region of interest while simultaneously developing a stopping criterion. This algorithm utilizes volumetric texture extraction to establish the homogeneity criterion by which the analysis of the aggregating voxel similarities will, over time, define region boundaries. Using our proposed approach on a volume, derived from Computed Tomography (CT) images of the abdomen, we segmented three organs of interest (liver, kidney and spleen). We find that this algorithm is capable of providing excellent volumetric segmentations while also demanding significantly less user intervention than other techniques as it requires only one interaction from the user, namely the selection of a single seed voxel.
منابع مشابه
Single click volumetric segmentation of abdominal organs in Computed Tomography images
Current segmentation techniques require user intervention to fine-tune thresholds and parameters, plot initial contours, refine seed placement, and engage in other optimization strategies. This can cause difficulties for physicians trying to use segmentation tools as they may not have the time or resources to overcome steep learning curves. In order to segment volumetric regions from sequential...
متن کاملRun-length Encoding for Volumetric Texture
With the dramatic increase of 3D imaging techniques, there is a great demand for new approaches in texture analysis of volumetric data. In this paper, we present a new approach for volumetric texture analysis using a runlength encoding matrix and its texture descriptors. We experiment with our approach on the volumetric data generated from two normal Computed Tomography (CT) studies of the ches...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملQuantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization
Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various sca...
متن کاملQuantification of Ultrasonic Texture heterogeneity via Volumetric Stochastic Modeling for Tissue Characterization
Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various sca...
متن کامل