Type-1 cannabinoid receptors colocalize with caveolin-1 in neuronal cells

نویسندگان

  • Monica Bari
  • Sergio Oddi
  • Chiara De Simone
  • Paola Spagnolo
  • Valeria Gasperi
  • Natalia Battista
  • Diego Centonze
  • Mauro Maccarrone
چکیده

Type-1 (CB1) and type-2 (CB2) cannabinoid receptors belong to the rhodopsin family of G protein-coupled receptors, and are activated by endogenous lipids termed "endocannabinoids". Recent reports have demonstrated that CB1R, unlike CB2R and other receptors and metabolic enzymes of endocannabinoids, functions in the context of lipid rafts, i.e. plasma membrane microdomains which may be important in modulating signal transduction. Here, we present novel data based on cell subfractionation, immunoprecipitation and confocal microscopy studies, that show that in C6 cells CB1R co-localizes almost entirely with caveolin-1. We also show that trafficking of CB1R in response to the raft disruptor methyl-beta-cyclodextrin (MCD) is superimposable on that of caveolin-1, and that MCD treatment increases the accessibility of CB1R to its specific antibodies. These findings may be relevant for the manifold CB1R-dependent activities of endocannabinoids, like the regulation of apoptosis and of neurodegenerative diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics and interaction of caveolin-1 isoforms with BMP-receptors.

Caveolae are small invaginations of the cell membrane that are thought to play a role in important physiological functions such as cell surface signaling, endocytosis and intracellular cholesterol transport. Caveolin-1 is a key protein in these domains and contributes to the organization of cholesterol and saturated lipids within these vesicular invaginations of the plasma membrane. Caveolae ar...

متن کامل

Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex.

Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidenc...

متن کامل

Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1

BACKGROUND Lipid raft domains form in plasma membranes of eukaryotic cells by the tight packing of glycosphingolipids and cholesterol. Caveolae are invaginated structures that form in lipid raft domains when the protein caveolin-1 is expressed. The Chlamydiaceae are obligate intracellular bacterial pathogens that replicate entirely within inclusions that develop from the phagocytic vacuoles in ...

متن کامل

P 148: The Role of Cannabinoids in Ischemia Stroke

Inflammation serves a protective function in controlling infections and promoting tissue repair, and can also cause damage to tissue and disease. Many types of cells involved in this process, expressing the components of the cannabinoid signaling system that can be controlled endogenously or pharmacologically. Cannabinoids inhibit neuroinflammation and the immune cells express the whole machi...

متن کامل

Caveolins and intracellular calcium regulation in human airway smooth muscle.

Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is a key factor in airway smooth muscle (ASM) tone. In vascular smooth muscle, specialized membrane microdomains (caveolae) expressing the scaffolding protein caveolin-1 are thought to facilitate cellular signal transduction. In human ASM cells, we tested the hypothesis that caveolae mediate Ca(2+) responses to agonist stimulation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2008