The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli
نویسندگان
چکیده
BACKGROUND In our previous study, the feasibility of Rubisco-based engineered E. coli (that contains heterologous phosphoribulokinase (PrkA) and Rubisco) for in situ CO2 recycling during the fermentation of pentoses or hexoses was demonstrated. Nevertheless, it is perplexing to see that only roughly 70 % of the carbon fed to the bacterial culture could be accounted for in the standard metabolic products. This low carbon recovery during fermentation occurred even though CO2 emission was effectively reduced by Rubisco-based engineered pathway. RESULTS In this study, the heterologous expression of form I Rubisco was found to enhance the accumulation of pyruvate in Escherichia coli MZLF [E. coli BL21(DE3) Δzwf, Δldh, Δfrd]. This may be attributed to the enhanced glycolytic reaction supported by the increased biomass and the ethanol/acetate ratio. Besides, it was found that the transcription of arcA (encodes the redox-dependent transcriptional activators ArcA that positively regulates the transcription of pyruvate formate-lyase) was down-regulated in the presence of Rubisco. The enhanced accumulation of pyruvate also occurs when PrkA is co-expressed with Rubisco in E. coli MZLF. Furthermore, E. coli containing Rubisco-based engineered pathway has a distinct profile of the fermentation products, indicating CO2 was converted into fermentation products. By analyzing the ratio of total C-2 (2-carbon fermentation products) to total C-1 (1-carbon fermentation product) of MZLFB (MZLF containing Rubisco-based engineered pathway), it is estimated that 9 % of carbon is directed into Rubisco-based engineered pathway. CONCLUSIONS Here, we report for the first time the complete profile of fermentation products using E. coli MZLF and its derived strains. It has been shown that the expression of Rubisco alone in MZLF enhances the accumulation of pyruvate. By including the contribution of pyruvate accumulation, the perplexing problem of low carbon recovery during fermentation by E. coli containing Rubisco-based engineered pathway has been solved. 9 % of glucose consumption is directed from glycolysis to Rubisco-based engineered pathway in MZLFB. The principle characteristics of mixotroph MZLFB are the high bacterial growth and the low CO2 emission.
منابع مشابه
Alternative Feed Resources and Their Effects onthe Parametersof Rumen Fermentation, in situ Degradability, the Population of Ciliated Protozoaand the in vitro Gas Production Profile in Sicilo-Sarde Sheep
The effect of the substitution of imported raw materials (corn and soyabeans) by local food resources (barley, white sorghum, triticale and horse bean) on the parameters of faciesfermentation and digestibility in the rumen of sheep was evaluated. Four Sicilo-Sarde rams 4.8±0.5 years of age with an average live weight of 45.25±3.5 kg, permanently canulated in the rumen and housed in individual c...
متن کاملOverproduction of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase from Synechococcus sp. strain PCC6301 in glucose-controlled high-cell-density fermentations by Escherichia coli K-12.
A predictive and feedback glucose feed controller, previously developed for nutrient-sufficient growth of Escherichia coli to high cell densities, was used to produce large quantities of a heterologous, cyanobacterial recombinant hexadecameric (L8S8) protein, ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) in E. coli. Culture and plasmid stability conditions were optimized to yield th...
متن کاملEquilibrium Isotherm, Kinetic Modeling, Optimization, and Characterization Studies of Cadmium Adsorption by Surface-Engineered Escherichia coli
Background: Amongst the methods that remove heavy metals from environment, biosorption approaches have received increased attention because of their environmentally friendly and cost-effective feature, as well as their superior performances. Methods: In the present study, we investigated the ability of a surface-engineered Escherichia coli, carrying the cyanobacterial metallothionein on the cel...
متن کاملEnabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria
Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints....
متن کاملLinked Rubisco subunits can assemble into functional oligomers without impeding catalytic performance.
Although transgenic manipulation in higher plants of the catalytic large subunit (L) of the photosynthetic CO2-fixing enzyme ribulose 1,5-bisphospahte carboxylase/oxygenase (Rubisco) is now possible, the manipulation of its cognate small subunit (S) is frustrated by the nuclear location of its multiple gene copies. To examine whether L and S can be engineered simultaneously by fusing them toget...
متن کامل