Tool Demonstration: FSolidM for Designing Secure Ethereum Smart Contracts
نویسندگان
چکیده
Blockchain-based distributed computing platforms enable the trusted execution of computation—defined in the form of smart contracts—without trusted agents. Smart contracts are envisioned to have a variety of applications, ranging from financial to IoT asset tracking. Unfortunately, the development of smart contracts has proven to be extremely error prone. In practice, contracts are riddled with security vulnerabilities comprising a critical issue since bugs are by design nonfixable and contracts may handle financial assets of significant value. To facilitate the development of secure smart contracts, we have created the FSolidM framework, which allows developers to define contracts as finite state machines (FSMs) with rigorous and clear semantics. FSolidM provides an easy-to-use graphical editor for specifying FSMs, a code generator for creating Ethereum smart contracts, and a set of plugins that developers may add to their FSMs to enhance security and functionality.
منابع مشابه
Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach
The adoption of blockchain-based distributed computation platforms is growing fast. Some of these platforms, such as Ethereum, provide support for implementing smart contracts, which are envisioned to have novel applications in a broad range of areas, including finance and Internet-of-Things. However, a significant number of smart contracts deployed in practice suffer from security vulnerabilit...
متن کاملA Survey of Attacks on Ethereum Smart Contracts (SoK)
Smart contracts are computer programs that can be correctly executed by a network of mutually distrusting nodes, without the need of an external trusted authority. Since smart contracts handle and transfer assets of considerable value, besides their correct execution it is also crucial that their implementation is secure against attacks which aim at stealing or tampering the assets. We study th...
متن کاملA survey of attacks on Ethereum smart contracts
Smart contracts are computer programs that can be correctly executed by a network of mutually distrusting nodes, without the need of an external trusted authority. Since smart contracts handle and transfer assets of considerable value, besides their correct execution it is also crucial that their implementation is secure against attacks which aim at stealing or tampering the assets. We study th...
متن کاملFindel: Secure Derivative Contracts for Ethereum
Blockchain-based smart contracts are considered a promising technology for handling financial agreements securely. In order to realize this vision, we need a formal language to unambiguously describe contract clauses. We introduce Findel – a purely declarative financial domain-specific language (DSL) well suited for implementation in blockchain networks. We implement an Ethereum smart contract ...
متن کاملDefining the Ethereum Virtual Machine for Interactive Theorem Provers
Smart contracts in Ethereum are executed by the Ethereum Virtual Machine (EVM). We defined EVM in Lem, a language that can be compiled for a few interactive theorem provers. We tested our definition against a standard test suite for Ethereum implementations. Using our definition, we proved some safety properties of Ethereum smart contracts in an interactive theorem prover Isabelle/HOL. To our k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.09949 شماره
صفحات -
تاریخ انتشار 2018