Recent Widespread Tree Growth Decline Despite Increasing Atmospheric CO2
نویسندگان
چکیده
BACKGROUND The synergetic effects of recent rising atmospheric CO(2) and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. METHODOLOGY/PRINCIPAL FINDINGS Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. CONCLUSIONS Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.
منابع مشابه
Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and ...
متن کاملLong Tree-Ring Chronologies Provide Evidence of Recent Tree Growth Decrease in a Central African Tropical Forest
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses ...
متن کاملClimate from dendrochronology: latest developments and results
This review deals with the latest developments in dendroclimatology focused on climate reconstruction. It presents results from research carried out during the period 1992–2001, when both the geographical and chronological extension of tree-ring data were greatly improved. Research projects are presently being carried out in nearly all the main forest land areas of the Subarctic and Subantarcti...
متن کاملHistorical Co2 Growth Enhancement Declines with Age in Quercus and Pinus
Despite experimental evidence showing that elevated CO2 levels increase growth in most plants, the isolation of a signal consistent with anthropogenically caused increases in atmospheric CO2 from the dendrochronological record has shown mixed results. Our extensive sets of tree ring data from the Ozark Mountains in Missouri showed that since 1850, Quercus velutina Lam., Quercus coccinea Muench....
متن کاملTwentieth century changes of tree-ring dC at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes
We aimed to gain knowledge on the changes in intrinsic water use efficiency (iWUE) in response to increasing atmospheric CO2 concentrations and climate change over the last century. We investigated the variation in the iWUE of mature Fagus sylvatica trees located in the higher, central and lower altitudinal forest limits (HFL, CFA and LFL) of one of the southernmost sites of beech distribution ...
متن کامل