F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft
نویسندگان
چکیده
F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in a process driven by the proton moving force (pmf), or uses the energy from ATP hydrolysis to pump protons against the concentration gradient across the membrane. ATPase is composed of two rotary motors, F0 and F1, which compete for control of their shared γ -shaft. We present a self-consistent physical model of F1 motor as a simplified two-state Brownian ratchet using the asymmetry of torsional elastic energy of the coiled-coil γ -shaft. This stochastic model unifies the physical concepts of linear and rotary motors, and explains the stepped unidirectional rotary motion. Substituting the model parameters, all independently known from recent experiments, our model quantitatively reproduces the ATPase operation, e.g. the 'no-load' angular velocity is ca. 400 rad/s anticlockwise at 4 mM ATP. Increasing the pmf torque exerted by F0 can slow, stop and overcome the torque generated by F1, switching from ATP hydrolysis to synthesis at a very low value of 'stall torque'. We discuss the motor efficiency, which is very low if calculated from the useful mechanical work it produces - but is quite high when the 'useful outcome' is measured in the number of H(+) pushed against the chemical gradient.
منابع مشابه
Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation.
F1-ATPase (F1) is a reversible ATP-driven rotary motor protein. When its rotary shaft is reversely rotated, F1 produces ATP against the chemical potential of ATP hydrolysis, suggesting that F1 modulates the rate constants and equilibriums of catalytic reaction steps depending on the rotary angle of the shaft. Although the chemomechanical coupling scheme of F1 has been determined, it is unclear ...
متن کاملMechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase.
F1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular detail...
متن کاملATP Synthesis: The World’s Smallest Wind-Up Toy
ATP synthase contains two rotary motors coupled back-to-back: the protonmotive force-driven motor F0 pushes the ATP-driven motor F1 in reverse, causing it to synthesize ATP. Half of this process has now been reproduced in vitro, using tiny magnets instead of F0 to drive the reverse rotation of a single F1 molecule.
متن کاملF1-ATPase: A Rotary Motor Made of a Single Molecule
synthesis/hydrolysis of ATP in F 1 ? Almost 20 years ago Paul Boyer made a radical proposal that the two reactions are mechanically coupled by rotation of a common shaft penetrating F 0 and F 1 (see Boyer, 1997). Part of his * Department of Physics reasoning was that F1 contains three catalytic sites, one Faculty of Science and Technology on each , which participate on average equally in ATP K...
متن کاملTorsional elasticity and energetics of F1-ATPase.
F(o)F(1)-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded F(o) generates the rotary torque that drives the rotation of the asymmetric shaft of F(1). Mechanical energy of the rotating shaft is used by the F(1) catalytic subunit to synthesize ATP. It was suggested that elastic power transmission wi...
متن کامل