MDM2 overexpression deregulates the transcriptional control of RB/E2F leading to DNA methyltransferase 3A overexpression in lung cancer.

نویسندگان

  • Yen-An Tang
  • Ruo-Kai Lin
  • Yo-Ting Tsai
  • Han-Shui Hsu
  • Yi-Chieh Yang
  • Chih-Yi Chen
  • Yi-Ching Wang
چکیده

PURPOSE Overexpression of DNA 5'-cytosine-methyltransferase 3A (DNMT3A), which silences genes including tumor suppressor genes (TSG), is involved in many cancers. Therefore, we examined whether the transcriptional deregulation of RB/MDM2 pathway was responsible for DNMT3A overexpression and analyzed the therapeutic potential of MDM2 antagonist for reversing aberrant DNA methylation status in lung cancer. EXPERIMENTAL DESIGN The regulation of DNMT3A expression and TSG methylation status by RB/MDM2 was assessed in cancer cell lines and patients. The effects of Nutlin-3, an MDM2 antagonist, on tumor growth in relation to DNMT3A expression and TSG methylation status were examined by xenograft model. RESULTS We found that RB suppressed DNMT3A promoter activity and mRNA/protein expression through binding with E2F1 protein to the DNMT3A promoter, leading to the decrease of methylation level globally and TSG specifically. In addition, MDM2 dramatically induced DNMT3A expression by negative control over RB. In clinical study, MDM2 overexpression inversely correlated with RB expression, while positively associating with overexpression of DNMT3A in samples from patients with lung cancer. Patients with high MDM2 and low RB expression showed DNMT3A overexpression with promoter hypermethylation in TSGs. Treatment with Nutlin-3, an MDM2 antagonist, significantly suppressed tumor growth and reduced DNA methylation level of TSGs through downregulation of DNMT3A expression in xenograft studies. CONCLUSIONS This study provides the first cell, animal, and clinical evidence that DNMT3A is transcriptionally repressed, in part, by RB/E2F pathway and that the repression could be attenuated by MDM2 overexpression. MDM2 is a potent target for anticancer therapy to reverse aberrant epigenetic status in cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Cancer Biology MDM2 Overexpression Deregulates the Transcriptional Control of RB/E2F Leading to DNA Methyltransferase 3A Overexpression in Lung Cancer

Purpose: Overexpression of DNA 50-cytosine-methyltransferase 3A (DNMT3A), which silences genes including tumor suppressor genes (TSG), is involved inmany cancers. Therefore, we examined whether the transcriptional deregulation of RB/MDM2 pathway was responsible for DNMT3A overexpression and analyzed the therapeutic potential of MDM2 antagonist for reversing aberrant DNA methylation status in

متن کامل

Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action.

The retinoblastoma tumor suppressor, RB, is thought to inhibit cell cycle progression through transcriptional repression. E2F-regulated genes have been viewed as presumptive targets of RB-mediated repression. However, we found that specific E2F targets were not regulated in a consistent manner by the action of a RB allele that is refractory to cyclin-dependent kinase/cyclin-mediated phosphoryla...

متن کامل

Relationship between grade and MDM2 oncoprotein overexpression in transitional cell carcinoma of the urinary bladder

Objective: Transitional cell carcinoma (TCC) of the urinary bladder is the second common cancer of the genitourinary tract. Several parameters such as clinical and pathological parameters, molecular factors, and etc play a role in determination of prognosis and type of treatment. In this research study, ...

متن کامل

The Pezcoller lecture: cancer cell cycles revisited.

Genetic lesions that disable key regulators of G1 phase progression in mammalian cells are present in most human cancers. Mitogen-dependent, cyclin D-dependent kinases (cdk4 and cdk6) phosphorylate the retinoblastoma (Rb) tumor suppressor protein, helping to cancel its growth-inhibitory effects and enabling E2F transcription factors to activate genes required for entry into the DNA synthetic ph...

متن کامل

MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A

It is well established that transcriptional silencing of critical tumor suppressor genes by DNA methylation is a fundamental process in the initiation of lung cancer. However, the involvement of microRNAs (miRNAs) in restoring abnormal DNA methylation patterns in lung cancer is not well understood. Therefore, and since miRNA-101 is complementary to the 3'-untranslated region of DNA methyltransf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 18 16  شماره 

صفحات  -

تاریخ انتشار 2012