One-sided Post-processing for the Discontinuous Galerkin Method Using ENO Type Stencil Choosing and the Local Edge Detection Method
نویسندگان
چکیده
In a previous paper by Ryan and Shu [Ryan, J. K., and Shu, C.-W. (2003). Methods Appl. Anal. 10(2), 295–307], a one-sided post-processing technique for the discontinuous Galerkin method was introduced for reconstructing solutions near computational boundaries and discontinuities in the boundaries, as well as for changes in mesh size. This technique requires prior knowledge of the discontinuity location in order to determine whether to use centered, partially one-sided, or one-sided post-processing. We now present two alternative stencil choosing schemes to automate the choice of post-processing stencil. The first is an ENO type stencil choosing procedure, which is designed to choose centered post-processing in smooth regions and one-sided or partially one-sided post-processing near a discontinuity, and the second method is based on the edge detection method designed by Archibald, Gelb, and Yoon [Archibald, R., Gelb, A., and Yoon, J. (2005). SIAM J. Numeric. Anal. 43, 259–279; Archibald, R., Gelb, A., and Yoon, J. (2006). Appl. Numeric. Math. (submitted)]. We compare these stencil choosing techniques and analyze their respective strengths and weaknesses. Finally, the automated stencil choices are applied in conjunction with the appropriate post-processing procedures and it is determine that the resulting numerical solutions are of the correct order.
منابع مشابه
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
In this paper, we present a discontinuous Galerkin finite clement method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact ste...
متن کاملComputational aspects of the Local Discontinuous Galerkin method: an algorithmic approach
The Local Discontinuous Galerkin (LDG) method is one of several discontinuous Galerkin (DG) methods that has been extensively studied in recent years. In this presentation we discuss several computational issues. After a brief introduction of the method applied to a second order linear operator, we describe the general structure of the discrete linear system and discuss the influence of the met...
متن کاملLocal Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develo...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملSuperconvergence of Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 28 شماره
صفحات -
تاریخ انتشار 2006