Lysophosphatidylcholine inhibits membrane-associated SNARE complex disassembly

نویسندگان

  • Leah Shin
  • Sunxi Wang
  • Jin-Sook Lee
  • Amanda Flack
  • Guangzhao Mao
  • Bhanu P Jena
چکیده

In cells, N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors called SNAREs are involved in membrane fusion. In neurons, for example, target membrane proteins SNAP-25 and syntaxin called t-SNAREs present at the pre-synaptic membrane, and a synaptic vesicle-associated membrane protein (VAMP) or v-SNARE, is part of the conserved protein complex involved in neurotransmission. Cholesterol and LPC (L-α-lysophosphatidylcholine) are known to contribute to the negative and positive curvature respectively of membranes. In this study, using purified recombinant neuronal membrane-associated SNAREs, we demonstrate for the first time that membrane-curvature-influencing lipids profoundly influence SNARE complex disassembly. Exposure of cholesterol-associated t-SNARE and v-SNARE liposome mixtures to NSF-ATP results in dissociated vesicles. In contrast, exposure of LPC-associated t-SNARE and v-SNARE liposome mixtures to NSF-ATP, results in inhibition of t-/v-SNARE disassembly and the consequent accumulation of clustered vesicles. Similarly, exposure of isolated rat brain slices and pancreas to cholesterol or LPC, also demonstrates LPC-induced inhibition of SNARE complex disassembly. Earlier studies demonstrate a strong correlation between altered plasma LPC levels and cancer. The altered plasma LPC levels observed in various cancers may in part contribute to defects in SNARE assembly-disassembly and membrane fusion, consequently affecting protein maturation and secretion in cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion.

SNARE-dependent membrane fusion requires the disassembly of cis-SNARE complexes (formed by SNAREs anchored to one membrane) followed by the assembly of trans-SNARE complexes (SNAREs anchored to two apposed membranes). Although SNARE complex disassembly and assembly might be thought to be opposing reactions, the proteins promoting disassembly (Sec17p/Sec18p) and assembly (the HOPS complex) work ...

متن کامل

SNAP-29: a general SNARE protein that inhibits SNARE disassembly and is implicated in synaptic transmission.

Using the yeast two-hybrid system with syntaxin-1A as bait, we isolated soluble NSF attachment protein (SNAP)-29 from a human brain cDNA library. Synaptosomal fractionation and immunocytochemical staining of hippocampal neurons in culture showed that SNAP-29 is present at synapses and is predominantly associated with synaptic vesicles. The interaction of SNAP-29 with syntaxin-1 was further conf...

متن کامل

Temperature-Sensitive Paralytic Mutations Demonstrate that Synaptic Exocytosis Requires SNARE Complex Assembly and Disassembly

The neuronal SNARE complex is formed via the interaction of synaptobrevin with syntaxin and SNAP-25. Purified SNARE proteins assemble spontaneously, while disassembly requires the ATPase NSF. Cycles of assembly and disassembly have been proposed to drive lipid bilayer fusion. However, this hypothesis remains to be tested in vivo. We have isolated a Drosophila temperature-sensitive paralytic mut...

متن کامل

A conserved membrane attachment site in alpha-SNAP facilitates N-ethylmaleimide-sensitive factor (NSF)-driven SNARE complex disassembly.

The ATPase NSF (N-ethylmaleimide-sensitive factor) and its SNAP (soluble N-ethylmaleimide-sensitive factor attachment protein) cofactor constitute the ubiquitous enzymatic machinery responsible for recycling of the SNARE (SNAP receptor) membrane fusion machinery. The enzyme uses the energy of ATP hydrolysis to dissociate the constituents of the SNARE complex, which is formed during the fusion o...

متن کامل

Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles.

The N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (SNAP) are cytosolic factors that promote vesicle fusion with a target membrane in both the constitutive and regulated secretory pathways. NSF and SNAP are thought to function by catalyzing the disassembly of a SNAP receptor (SNARE) complex consisting of membrane proteins of the secretory vesicle and target membrane....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2012