Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes
نویسندگان
چکیده
The primary sources and atmospheric chemistry of C2-C5 alkanes were incorporated into the atmospheric chemistry general circulation model EMAC. Model output is compared with new observations from the NOAA/ESRL GMD Cooperative Air Sampling Network. Based on the global coverage of the data, two different anthropogenic emission datasets for C4-C5 alkanes, widely used in the modelling community, are evaluated. We show that the model reproduces the main atmospheric features of the C2-C5 alkanes (e.g., seasonality). While the simulated values for ethane and propane are within a 20% range of the measurements, larger deviations are found for the other tracers. According to the analysis, an oceanic source of butanes and pentanes larger than the current estimates would be necessary to match the observations at some coastal stations. Finally the effect of C2-C5 alkanes on the concentration of acetone and acetaldehyde are assessed. Their chemical sources are largely controlled by the reaction with OH, while the reactions with NO3 and Cl contribute only to a little extent. The total amount of acetone produced by propane, i-butane and i-pentane oxidation is 11.2 Tg/yr, 4.3 Tg/yr, and 5.8 Tg/yr, respectively. Moreover, 18.1, 3.1, 3.4, 1.4 and 4.8 Tg/yr of acetaldehyde are formed by the oxidation of ethane, propane, n-butane, n-pentane and i-pentane, respectively. Correspondence to: A. Pozzer ([email protected])
منابع مشابه
Quantifying sources of methane using light alkanes in the Los Angeles basin, California
[1] Methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and C2–C5 alkanes were measured throughout the Los Angeles (L.A.) basin in May and June 2010. We use these data to show that the emission ratios of CH4/CO and CH4/CO2 in the L.A. basin are larger than expected from population-apportioned bottom-up state inventories, consistent with previously published work. We use experimentally de...
متن کاملGeomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments
Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5) and longer alkanes. C2-C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To...
متن کاملSimulation of Yield Decline as a Result of Water Stress Using BUDGET Model
In this paper, to account for the effect of water stresses in the various growth stages under deficitirrigation, the multiplicative, seasonal and minimal approaches are integrated in the BUDGETmodel. To evaluate the model, the simulated yields for winter wheat (was grown in Sharif Abaddistrict) under various levels of water stress were compared with observed yields. The resultshowed, simulated ...
متن کاملName of research institute or organization:
Project description: C2-C5 alkanes, alkenes and alkynes are useful tracers of natural and anthropogenic emissions. With diverse emission sources and moderately short atmospheric lifetimes, non-methane hydrocarbons (NMHCs) exhibit significant latitudinal, seasonal and vertical gradients [1]. They primarily react with the hydroxyl (OH) radical in the atmosphere, although also with ozone, nitrate,...
متن کاملModeling Solubility Behavior of CO2 in [C2-mim][BF4] and [C4-mim][BF4] Ionic Liquids by sPC-SAFT Equation of State
The simplified perturbed chain statistical associating fluid theory (sPC-SAFT) Equation of State (EOS) was proposed to describe the thermodynamic properties of pure ionic liquids (ILs). A set of sPC-SAFT parameters for 2 ILs was obtained by fitting the experimental liquid densities data over a wide range of temperature at atmospheric pressure. Good agreement with experimental density data was o...
متن کامل