Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.)

نویسندگان

  • Herbert J. Kronzucker
  • Mark W. Szczerba
  • Lasse M. Schulze
  • Dev T. Britto
چکیده

The interaction of sodium and potassium ions in the context of the primary entry of Na(+) into plant cells, and the subsequent development of sodium toxicity, has been the subject of much recent attention. In the present study, the technique of compartmental analysis with the radiotracers (42)K(+) and (24)Na(+) was applied in intact seedlings of barley (Hordeum vulgare L.) to test the hypothesis that elevated levels of K(+) in the growth medium will reduce both rapid, futile Na(+) cycling at the plasma membrane, and Na(+) build-up in the cytosol of root cells, under saline conditions (100 mM NaCl). We reject this hypothesis, showing that, over a wide (400-fold) range of K(+) supply, K(+) neither reduces the primary fluxes of Na(+) at the root plasma membrane nor suppresses Na(+) accumulation in the cytosol. By contrast, 100 mM NaCl suppressed the cytosolic K(+) pool by 47-73%, and also substantially decreased low-affinity K(+) transport across the plasma membrane. We confirm that the cytosolic [K(+)]:[Na(+)] ratio is a poor predictor of growth performance under saline conditions, while a good correlation is seen between growth and the tissue ratios of the two ions. The data provide insight into the mechanisms that mediate the toxic influx of sodium across the root plasma membrane under salinity stress, demonstrating that, in the glycophyte barley, K(+) and Na(+) are unlikely to share a common low-affinity pathway for entry into the plant cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced salinity tolerance and altered ion storage factor in Hordeum vulgare plants upon salicylic-acid priming

AbstractThis study was undertaken to better understand the probable mechanisms of salt stress tolerance induced by seed priming of salicylic acid (SA) in barley. The barley seeds were pre-soaked by SA or water and then sown under different saline watering regimes including 0.62 (tapwater), 5, 10 and 15 dS m-1 in petri dishes and trend of water absorbing, seedling growth, germination rate and pe...

متن کامل

Effect of salinity stress on physiological characteristics and protein profile of tolerant and sensitive barley (Hordeum vulgare L.) cultivars at vegetative growth stage

To study the variation of plant traits related to stress tolerance in tolerant and sensitive barley cultivars under salt stress conditions, an experiment was carried out as factorial arrangements in completely randomized design in Payame Noor University of Mahabad, Iran in 2018. Application of salinity stress of 250 mM of sodium chloride started from tillering stage, and leaf samples were taken...

متن کامل

Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley.

In barley (Hordeum vulgare L.) leaves, differential ion accumulation commonly results in inorganic phosphate (Pi) being confined to the mesophyll and Ca(2+) to the epidermis, with preferential epidermal accumulation of Cl(-), Na(+), and some other ions. The pattern was confirmed in this study for major inorganic anions and cations by analysis of barley leaf protoplasts. The work focused on the ...

متن کامل

SALINITY TOLERANCE IN BARLEY (HORDEUM VULGARE L.): EFFECTS OF VARYING NaCl, K/Na AND NaHCO3 LEVELS ON CULTIVARS DIFFERING IN TOLERANCE

Although barley (Hordeum vulgare L.) is regarded as salt tolerant among crop plants, its growth and plant development is severely affected by ionic and osmotic stresses in salt-affected soils. To elucidate the tolerance mechanism, growth and ion uptake of three barley cultivars, differing in salt tolerance, were examined under different levels of NaCl, K/Na and NaHCO3 in the root medium. The cu...

متن کامل

Temperature-Induced Protein Conformational Changes in Barley Root Plasma Membrane-Enriched Microsomes: III. Effect of Temperature and Cations on Protein Sulfhydryl Reactivity.

Temperature and cations modified the reaction of barley (Hordeum vulgare L. cv Conguest) root plasma membrane protein sulfhydryl groups with N-4-(7-diethylamino-4-methylcoumarin-3-yl)-phenyl maleimide (CPM). The pseudo-first-order rate constants for the formation of fluorescent CPM-protein adducts increased as the temperature was raised above 30 degrees C, suggesting changes in protein conforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Experimental Botany

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2008