Subspace Interpolation with Applications to Elliptic Regularity
نویسنده
چکیده
In this paper, we prove new embedding results by means of subspace interpolation theory and apply them to establishing regularity estimates for the biharmonic Dirichlet problem, and for the Stokes and the Navier-Stokes systems on polygonal domains. The main result of the paper gives a stability estimate for the biharmonic problem at the threshold index of smoothness. The classical regularity estimates for the biharmonic problem are deduced as a simple corollary of the main result. The subspace interpolation tools and techniques presented in this paper can be applied to establishing sharp regularity estimates for other elliptic boundary value problems on polygonal domains.
منابع مشابه
Quotient Arens regularity of $L^1(G)$
Let $mathcal{A}$ be a Banach algebra with BAI and $E$ be an introverted subspace of $mathcal{A}^prime$. In this paper we study the quotient Arens regularity of $mathcal{A}$ with respect to $E$ and prove that the group algebra $L^1(G)$ for a locally compact group $G$, is quotient Arens regular with respect to certain introverted subspace $E$ of $L^infty(G)$. Some related result are given as well.
متن کاملA Meyers type regularity result for approximations of second order elliptic operators by Galerkin schemes
We prove a Meyers type regularity estimate for approximate solutions of second order elliptic equations obtained by Galerkin methods. The proofs rely on interpolation results for Sobolev spaces on graphs. Estimates for second order elliptic operators on rather general graphs are also obtained.
متن کاملExistence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation
We prove existence, uniqueness and regularity of weak solutions of a coupled parabolic-elliptic model in 2D, and existence of weak solutions in 3D; we consider the standard equations of magnetohydrodynamics with the advective terms removed from the velocity equation. Despite the apparent simplicity of the model, the proof in 2D requires results that are at the limit of what is available, includ...
متن کاملBoundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations
We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C1,α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C2,α on the b...
متن کاملRegularity estimates for elliptic boundary value problems with smooth data on polygonal domains
We consider the model Dirichlet problem for Poisson’s equation on a plane polygonal convex domain W with data f in a space smoother than L2. The regularity and the critical case of the problem depend on the measure of the maximum angle of the domain. Interpolation theory and multilevel theory are used to obtain estimates for the critical case. As a consequence, sharp error estimates for the cor...
متن کامل