Signaling mechanisms of angiotensin II-induced attenuation of GABAergic input to hypothalamic presympathetic neurons.

نویسندگان

  • Qian Chen
  • Hui-Lin Pan
چکیده

The hypothalamic paraventricular nucleus (PVN) is an important site for the regulation of sympathetic outflow. Angiotensin II (Ang II) can activate AT(1) receptors to stimulate PVN presympathetic neurons through inhibition of GABAergic input. However, little is known about the downstream pathway involved in this presynaptic action of Ang II in the PVN. In this study, using whole cell recording from retrogradely labeled PVN neurons in rat brain slices, we determined the signaling mechanisms responsible for the effect of Ang II on synaptic GABA release to spinally projecting PVN neurons. Bath application of Ang II reproducibly decreased the frequency of GABAergic miniature postsynaptic inhibitory currents (mIPSCs) in fluorescence-labeled PVN neurons. Ang II failed to change the frequency of mIPSCs in labeled PVN neurons treated with pertussis toxin. However, Ang II-induced inhibition of mIPSCs persisted in the presence of either CdCl(2), a voltage-gated Ca(2+) channel blocker, or 4-aminopyridine, a blocker of voltage-gated K(+) channels. Interestingly, inhibition of superoxide with superoxide dismutase or Mn(III) tetrakis (4-benzoic acid) prophyrin completely blocked Ang II-induced decrease in mIPSCs. By contrast, inhibition of hydroxyl radical formation with the ion chelator deferoxamine did not significantly alter the effect of Ang II. These findings suggest that the presynaptic action of Ang II on synaptic GABA release in the PVN is mediated by the pertussis toxin-sensitive G(i/o) proteins but not by voltage-gated Ca(2+) and K(+) channels. Ang II attenuates GABAergic input to PVN presympathetic neurons through reactive oxygen species, especially superoxide anions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced GABAergic inhibition of kidney-related PVN neurons in streptozotocin-treated type 1 diabetic mouse.

Activity of presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus is known to play an important role in the regulation of sympathetic outflow. Sympathetic overactivity is associated with many pathophysiological conditions such as diabetes mellitus and hypertension; however, the underlying synaptic mechanisms are poorly understood. In this study, we examined the GABAerg...

متن کامل

Astrocytes Contribute to Angiotensin II Stimulation of Hypothalamic Neuronal Activity and Sympathetic Outflow.

Angiotensin II (AngII) is a key neuropeptide that acting within the brain hypothalamic paraventricular nucleus regulates neurohumoral outflow to the circulation. Moreover, an exacerbated AngII action within the paraventricular nucleus contributes to neurohumoral activation in hypertension. Although AngII effects involve changes in paraventricular nucleus neuronal activity, the precise underlyin...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Regulation of Hypothalamic Presympathetic Neurons and Sympathetic Outflow by Group II Metabotropic Glutamate Receptors in Spontaneously Hypertensive Rats.

Increased glutamatergic input in the hypothalamic paraventricular nucleus (PVN) plays an important role in the development of hypertension. Group II metabotropic glutamate receptors are expressed in the PVN, but their involvement in regulating synaptic transmission and sympathetic outflow in hypertension is unclear. Here, we show that the group II metabotropic glutamate receptors agonist (2S,2'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 5  شماره 

صفحات  -

تاریخ انتشار 2007