Multiscale Singular Perturbations and Homogenization of Optimal Control Problems
نویسنده
چکیده
The paper is devoted to singular perturbation problems with a finite number of scales where both the dynamics and the costs may oscillate. Under some coercivity assumptions on the Hamiltonian, we prove that the value functions converge locally uniformly to the solution of an effective Cauchy problem for a limit Hamilton-Jacobi equation and that the effective operators preserve several properties of the starting ones; under some additional hypotheses, their explicit formulas are exhibited. In some special cases we also describe the effective dynamics and costs of the limiting control problem. An important application is the homogenization of Hamilton-Jacobi equations with a finite number of scales and a coercive Hamiltonian.
منابع مشابه
Multiscale problems and homogenization for second-order Hamilton–Jacobi equations
We prove a general convergence result for singular perturbations with an arbitrary number of scales of fully nonlinear degenerate parabolic PDEs. As a special case we cover the iterated homogenization for such equations with oscillating initial data. Explicit examples, among others, are the two-scale homogenization of quasilinear equations driven by a general hypoelliptic operator and the n-sca...
متن کاملA FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete
This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...
متن کاملConvergence by Viscosity Methods in Multiscale Financial Models with Stochastic Volatility
We study singular perturbations of a class of stochastic control problems under assumptions motivated by models of financial markets with stochastic volatilities evolving on a fast time scale. We prove the convergence of the value function to the solution of a limit (effective) Cauchy problem for a parabolic equation of Hamilton-Jacobi-Bellman type. We use methods of the theory of viscosity sol...
متن کاملViscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control
Viscosity solutions methods are used to pass to the limit in some penalization problems for rst order and second order, degenerate parabolic, Hamilton-Jacobi-Bellman equations. This characterizes the limit of the value functions of singularly perturbed optimal control problems for nonlinear deterministic systems and controlled degenerate diiusions, respectively. The results cover also cases whe...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کامل