Collective Contextual Anomaly Detection for Building Energy Consumption
نویسندگان
چکیده
Commercial and residential buildings are responsible for a substantial portion of total global energy consumption and as a result make a significant contribution to global carbon emissions. Hence, energy-saving goals that target buildings can have a major impact in reducing environmental damage. During building operation, a significant amount of energy is wasted due to equipment and human-related faults. To reduce waste, today’s smart buildings monitor energy usage with the aim of identifying abnormal consumption behaviour and notifying the building manager to implement appropriate energy-saving procedures. To this end, this research proposes the ensemble anomaly detection (EAD) framework. The EAD is a generic framework that combines several anomaly detection classifiers using majority voting. This anomaly detection classifiers are formed using existing machine learning algorithm. It is assumed that each anomaly classifier has equal weight. More importantly, to ensure diversity of anomaly classifiers, the EAD is implemented by combining pattern-based and predictionbased anomaly classifiers. For this reason, this research also proposes a new pattern-based anomaly classifier, the collective contextual anomaly detection using sliding window (CCADSW) framework. The CCAD-SW, which is also a machine leaning-based framework that identifies anomalous consumption patterns using overlapping sliding windows. The EAD framework combines the CCAD-SW, which is implemented using autoencoder, with two predictionbased anomaly classifiers that are implemented using the support vector regression and random forest machine-learning algorithms. In addition, it determines an ensemble threshold that yields an anomaly classifier with optimal anomaly detection capability and false positive minimization. Results show that the EAD performs better than the individual anomaly detection classifiers. In the EAD framework, the optimal ensemble anomaly classifier is not attained by combining the individual learners at their respective optimal performance levels. Instead, an ensemble threshold combination that yields the optimal anomaly classifier was identified by searching through the ensemble threshold space. The research was evaluated using real-world data provided by Powersmiths, located in Brampton, Ontario, Canada.
منابع مشابه
Fault Detection Analysis of Building Energy Consumption Using Data Mining Techniques
This study describes three different data mining techniques for detecting abnormal lighting energy consumption using hourly recorded energy consumption and peak demand (maximum power) data. Two outliers’ detection methods are applied to each class and cluster for detecting abnormal consumption in the same data set. In each class and cluster with anomalous consumption the amount of variation fro...
متن کاملAnomaly detection for visual analytics of power consumption data
Commercial buildings are significant consumers of electrical power. Also, energy expenses are an increasing cost factor. Many companies therefore want to save money and reduce their power usage. Building administrators have to first understand the power consumption behavior, before they can devise strategies to save energy. Secondly, sudden unexpected changes in power consumption may hint at de...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملReal time contextual collective anomaly detection over multiple data streams
Anomaly detection has always been a critical and challenging problem in many application areas such as industry, healthcare, environment and finance. This problem becomes more di cult in the Big Data era as the data scale increases dramatically and the type of anomalies gets more complicated. In time sensitive applications like real time monitoring, data are often fed in streams and anomalies a...
متن کاملApplication of Inductive Monitoring System to Plug Load Anomaly Detection
NASA Ames Research Center’s Sustainability Base is a new 50,000 sq. ft. LEED Platinum office building. Plug loads are expected to account for a significant portion of the overall energy consumption. This is because building design choices have resulted in greatly reduced energy demand from Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are major contributors to en...
متن کامل