Pii: S0925-7721(01)00056-6

نویسندگان

  • Michal Etzion
  • Ari Rappoport
چکیده

We tackle the problem of computing the Voronoi diagram of a 3-D polyhedron whose faces are planar. The main difficulty with the computation is that the diagram’s edges and vertices are of relatively high algebraic degrees. As a result, previous approaches to the problem have been non-robust, difficult to implement, or not provenly correct. We introduce three new proximity skeletons related to the Voronoi diagram: (1) the Voronoi graph (VG), which contains the complete symbolic information of the Voronoi diagram without containing any geometry; (2) the approximate Voronoi graph (AVG), which deals with degenerate diagrams by collapsing sub-graphs of the VG into single nodes; and (3) the proximity structure diagram (PSD), which enhances the VG with a geometric approximation of Voronoi elements to any desired accuracy. The new skeletons are important for both theoretical and practical reasons. Many applications that extract the proximity information of the object from its Voronoi diagram can use the Voronoi graphs or the proximity structure diagram instead. In addition, the skeletons can be used as initial structures for a robust and efficient global or local computation of the Voronoi diagram. We present a space subdivision algorithm to construct the new skeletons, having three main advantages. First, it solves at most uni-variate quartic polynomials. This stands in sharp contrast to previous approaches, which require the solution of a non-linear tri-variate system of equations. Second, the algorithm enables purely local computation of the skeletons in any limited region of interest. Third, the algorithm is simple to implement.  2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0925-7721(01)00015-3

In this paper we present a heuristic to reconstruct nonsmooth curves with multiple components. Experiments with several input data reveals the effectiveness of the algorithm in contrast with the other competing algorithms.  2001 Elsevier Science B.V. All rights reserved.

متن کامل

A Helly-type theorem for higher-dimensional transversals

We generalize the Hadwiger(-Danzer-Grünbaum-Klee) theorem on line transversals for an unbounded family of compact convex sets to the case of transversal planes of arbitrary dimension. This is the first Helly-type theorem known for transversals of dimension between 1 and d− 1.

متن کامل

Pii: S0925-7721(01)00068-2

Reconstruction of polygons from visibility information is known to be a difficult problem in general. In this paper, we consider a special case: reconstruction of orthogonal polygons from horizontal and vertical visibility information and show that this reconstruction can be performed in O(n logn) time.  2002 Elsevier Science B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002