Precise Control of Carbon Nanotube Membrane Structure for Enzyme Mimetic Catalysis
نویسنده
چکیده
OF THESIS PRECISE CONTROL OF CARBON NANOTUBE MEMBRANE STRUCTURE FOR ENZYME MIMETIC CATALYSIS The ability to fabricate a charge-driven water pump is a crucial step toward mimicking the catalytic ability of natural enzyme systems. The first step towards making this water pump a reality is the ability to make a carbon nanotube (CNT) membrane with uniform, 0.8 nm pore diameter. Proposed in this work is a method for synthesizing these carbon nanotubes via VPI-5 zeolite templated, transition metal catalyzed pyrolysis. Using a membrane composed of these CNTs, it is possible to get water molecules to flow single file at a high flow rate, and to orient them in such a way that would maximize their ability to be catalyzed. Additionally, using the ability to plate a monolayer of precious metal catalyst molecules around the exit to the membrane, catalyst efficiency can be maximized by making every catalyst atom come into contact with a substrate molecule. In this work, we also demonstrate the ability to plate a monolayer of precious metal catalyst atoms onto an insulating, mesoporous, support material. By combining these two chemical processes, it is possible to mimic the catalytic efficiency of natural enzyme systems.
منابع مشابه
A carbon nanotube structured biomimetic catalyst for polysaccharide degradation.
A unique artificial catalyst that mimics the structure of active sites in real enzymes using functionalized carbon nanotubes is presented. This concept will allow for the potential construction of a library of biomimetic catalysts for enzyme active centers, for which the structure-catalysis relationships are well defined.
متن کاملTheory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube.
We report the synthesis of a Fe-porphyrin-like carbon nanotube from conventional plasma-enhanced chemical vapor deposition. Covalent but seamless incorporation of the 5-6-5-6 porphyrinic Fe-N(4) moiety into the graphene hexagonal side wall was elucidated by x-ray and ultraviolet photoemission spectroscopies and first-principles electronic structure calculations. The resulting biomimetic nanotub...
متن کاملGate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)
In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...
متن کاملSynthesis and Application of Functionalized Carbon Nanotube Infused Polymer Membrane (fCNT/PSF/PVA) for Treatment of Phenol-Containing Wastewater
In this study, polymer composite membranes comprising carbon nanotube (CNT), polysulfone (PSF) and polyvinyl alcohol (PVA) were synthesized via the phase inversion method and used to remove phenol from the phenol-containing wastewater. The fabricated membranes were reinforced with the functionalized carbon nanotubes (fCNTs) and coated with PVA to enhance their mechanical strength and anti-fouli...
متن کاملGate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)
In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...
متن کامل