Bioacoustical Periodic Pulse Train Signal Detection and Classification using Spectrogram Intensity Binarization and Energy Projection
نویسندگان
چکیده
The following work outlines an approach for automatic detection and recognition of periodic pulse train signals using a multi-stage process based on spectrogram edge detection, energy projection and classification. The method has been implemented to automatically detect and recognize pulse train songs of minke whales. While the long term goal of this work is to properly identify and detect minke songs from large multi-year datasets, this effort was developed using sounds off the coast of Massachusetts, in the Stellwagen Bank National Marine Sanctuary. The detection methodology is presented and evaluated on 232 continuous hours of acoustic recordings and a qualitative analysis of machine learning classifiers and their performance is described. The trained automatic detection and classification system is applied to 120 continuous hours, comprised of various challenges such as broadband and narrowband noises, low SNR, and other pulse train signatures. This automatic system achieves a TPR of 63% for FPR of 0.6% (or 2.2 FP/h), at a Precision (PPV) of 84% and an F1 score of 71%.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملObstructive Sleep Apnea Classification Based on Spectrogram Patterns in the Electrocardiogram
In this paper we describe the findings of an exploratory study of the effect of obstructive sleep apnea (OSA) on the electrocardiogram (ECG) signal. Episodes of sleep apnea are characterized by periodic cycles of breathing cessation and restoration. Our analysis was guided by the hypothesis that these cycles synchronously alter the ECG. We discovered several characteristic indicators of apnea i...
متن کاملFault detection, classification and location methodology for solar microgrids using current injection, online phaselet transform, mathematical morphology filter and signal energy analysis
In this paper, a new method for detection and fault location and classification in MTDC solar microgrid is presented. Some issues such as expanding renewable energy sources and DC loads and efforts to increase power quality and reduce the environmental impact of electricity generation have led to the expansion of solar networks. Identifying the types and locations of faults is important to ensu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1305.3250 شماره
صفحات -
تاریخ انتشار 2013