Effect of Tirapazamine, Metformin or Mild Hyperthermia on Recovery From Radiation-Induced Damage in Pimonidazole-Unlabeled Quiescent Tumor Cells
نویسندگان
چکیده
Background The aim of the study was to examine the effect of tirapazamine (TPZ) on recovery from radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells compared with that of metformin (Met) or mild temperature hyperthermia (MTH). Methods Proliferating (P) cells in EL4 tumors were labeled by continuous 5-bromo-2'-deoxyuridine (BrdU) administration. Tumors received γ-rays at 1 h after pimonidazole administration followed by Met or TPZ treatment or MTH. Twenty-four hours later, the responses of Q and total (P + Q) cells and those of the pimonidazole-unlabeled cells were assessed with micronucleation and apoptosis frequencies using immunofluorescence staining for BrdU and apoptosis frequency using immunofluorescence staining for pimonidazole, respectively. Results With γ-rays only, the pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using a delayed assay, was more clearly observed in Q than total cells. Post-irradiation MTH or Met treatment more clearly repressed the decrease in radio-sensitivity in the Q than total cells. Post-irradiation TPZ administration produced a large radio-sensitizing effect on both total and Q cells, especially on Q cells. In pimonidazole-unlabeled cell fractions in both total and Q cells, TPZ suppressed the reduction in sensitivity much more efficiently than MTH or Met without any radio-sensitizing effect. Conclusion Post-irradiation TPZ administration has the potential to both suppress recovery from radiation-induced damage and enhance the radio-sensitivity both in total and Q tumor cells. Post-irradiation TPZ administration may be useful for controlling tumors.
منابع مشابه
Effect of Tirapazamine and Mild Temperature Hyperthermia on the Recovery from Radiation-Induced Damage in Pimonidazole-Unlabeled Quiescent Tumor Cell Population
The aim in this study is to examine the effect of tirapazamine (TPZ) and mild temperature hyperthermia (MTH) on the repair of radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells. Labeling of proliferating (P) cells in C57BL/6J mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h aft...
متن کاملWortmannin efficiently suppresses the recovery from radiation-induced damage in pimonidazole-unlabeled quiescent tumor cell population
Labeling of proliferating (P) cells in mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2'-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after pimonidazole administration followed by caffeine or wortmannin treatment. Twenty-four hours later, assessment of the responses of quiescent (Q) and total (= P + Q) cell populations were based on the frequencie...
متن کاملRadiosensitivity and Capacity to Recover from Radiation-Induced Damage in Pimonidazole-Unlabeled Intratumor Quiescent Cells Depend on p53 Status
Background Using our method for selectively detecting the response of intratumor quiescent (Q) cells to irradiation, the Q cells was shown to have a much larger hypoxic fraction (HF) than total (= proliferating (P) + Q) tumor cell population irrespective of the p53 status of tumor cells. However, the size of the HF was clearly less than 100%, meaning the Q cell population was never fully hypoxi...
متن کاملRadiosensitivity of quiescent and proliferating cells grown as multicellular tumor spheroids
The multicellular spheroid model partly mimics tumor microenvironments in vivo and has been reported in plenty of studies regarding radiosensitivity. However, clear isolation of quiescent and proliferating cells in live conditions has been quite difficult owing to technical limitations; therefore, comprehensive characterization could not be done thus far. In this study, we succeeded in separate...
متن کاملTumour radiobiology beyond fractionation
Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...
متن کامل