The Splitting Field of X3 − 5 over Q

نویسنده

  • KEITH CONRAD
چکیده

In this note, we calculate all the basic invariants of the number field K = Q(3 √ 5, ω), where ω = (−1 + √ −3)/2 is a primitive cube root of unity. Here is the notation for the fields and Galois groups to be used. Let

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Elliptic Curves of the Form $y^2 = x^3 − pqx$

‎By the Mordell‎- ‎Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves‎, ‎where p and q are distinct primes‎. ‎We give infinite families of elliptic curves of the form y2=x3-pqx with rank two‎, ‎three and four‎, ‎assuming a conjecture of Schinzel ...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

On the Lagrange resolvents of a dihedral quintic polynomial

Let f(x)= x5+px3+qx2+rx+s ∈Q[x] be an irreducible quintic polynomial with a solvable Galois group. Let x1,x2,x3,x4,x5 ∈ C be the roots of f(x). The splitting field of f is K = Q(x1,x2,x3,x4,x5). Let ζ be a primitive fifth root of unity. The Lagrange resolvents of the root x1 are r1 = ( x1,ζ )= x1+x2ζ+x3ζ+x4ζ+x5ζ ∈K(ζ), r2 = ( x1,ζ )= x1+x2ζ+x3ζ+x4ζ+x5ζ ∈K(ζ), r3 = ( x1,ζ )= x1+x2ζ+x3ζ+x4ζ+x5ζ ∈...

متن کامل

The Splitting Field of X3 − 2 over Q

In Ok, the rational prime 2 has the principal prime factorization (2) = ( 3 √ 2)3, so k has class number 1: the ring Ok has unique factorization. Next we show Ok = Z[ 3 √ 2]. Let α = a+b 3 √ 2+c 3 √ 4 be an algebraic integer, with a, b, c all rational. Computing Trk/Q of α, α 3 √ 2, and α 3 √ 4 we see 3a, 6b, 6c ∈ Z. So the denominators of a, b, and c involve at most 2 and 3. To show 2 and 3 do...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006