Toward compression of small cell population: Harnessing stress in passive regions of dielectric elastomer actuators

نویسندگان

  • Alexandre Poulin
  • Samuel Rosset
  • Herbert R. Shea
  • Herbert Shea
چکیده

We present a dielectric elastomer actuator (DEA) for in vitro analysis of mm biological samples under periodic compressive stress. Understanding how mechanical stimuli affect cell functions could lead to significant advances in diseases diagnosis and drugs development. We previously reported an array of 72 micro-DEAs on a chip to apply a periodic stretch to cells. To diversify our cell mechanotransduction toolkit we have developed an actuator for periodic compression of small cell populations. The device is based on a novel design which exploits the effects of non-equibiaxial pre-stretch and takes advantage of the stress induced in passive regions of DEAs. The device consists of two active regions separated by a 2mm x 2mm passive area. When connected to an AC high-voltage source, the two active regions periodically compress the passive region. Due to the non-equibiaxial pre-stretch it induces uniaxial compressive strain greater than 10%. Cells adsorbed on top of this passive gap would experience the same uniaxial compressive stain. The electrodes configuration confines the electric field and prevents it from reaching the biological sample. A thin layer of silicone is casted on top of the device to ensure a biocompatible environment. This design provides several advantages over alternative technologies such as high optical transparency of the area of interest (passive region under compression) and its potential for miniaturization and parallelization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eurosensors XXV , September 4 - 7 , 2011 , Athens , Greece Arrays of 100 μ m x 100 μ m dielectric elastomer actuators to strain the single cells

Dielectric Elastomer Actuators (DEA) are compliant devices capable of generating large percentage strains with sub-second response times. Miniaturizing DEAs is challenging principally because of the need for μm-scale compliant electrodes. Employing low-energy gold-ion implantation into a 30 μm thick membrane of Polydimethylsiloxane (PDMS), we have patterned 100 μm wide compliant electrodes and ...

متن کامل

Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads

This work intends to extend the electromechanical characterisation of dielectric elastomer actuators. Planar actuators were realised with a 50 m-thick film of an acrylic elastomer coated with compliant electrodes. The isotonic transverse strain, the isometric transverse stress and the driving current, due to a 2 s high voltage impulse, were measured for four electrode materials (thickened elect...

متن کامل

Maximizing strain in miniaturized dielectric elastomer actuators

We present a theoretical model to optimise the unidirectional motion of a rigid object bonded to a miniaturized dielectric elastomer actuator (DEA), a configuration found for example in AMI’s haptic feedback devices, or in our tuneable RF phase shifter. Recent work has shown that unidirectional motion is maximized when the membrane is both anistropically prestretched and subjected to a dead loa...

متن کامل

Tunable lenses using transparent dielectric elastomer actuators.

Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency, and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present an elastomer-liquid lens system which makes use of an inline, transparent electroactive polymer actuator. The lens requires only a minimal number of components: a...

متن کامل

Multilayer Dielectric Elastomer Actuators with Ion Implanted Electrodes

We present the design, fabrication process and characterization of multilayer miniaturized polydimethylsiloxane (PDMS)-based dielectric elastomer diaphragm actuators. The conductive stretchable electrodes are obtained by lowenergy metal ion implantation. To increase force, decrease the required voltage, and avoid dielectric breakdown, we present here a technique to fabricate multilayer devices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014