Multispectral Palmprint Recognition Using a Quaternion Matrix
نویسندگان
چکیده
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.
منابع مشابه
Novel image fusion scheme based on dependency measure for robust multispectral palmprint recognition
Multispectral palmprint is considered as an effective biometric modality to accurately recognize a subject with high confidence. This paper presents a novel multispectral palmprint recognition system consisting of three functional blocks namely: (1) novel technique to extract Region of Interest (ROI) from the hand images acquired using a contact less sensor (2) novel image fusion scheme based o...
متن کاملHighly Accurate Multispectral Palmprint Recognition Using Statistical and Wavelet Features
Palmprint is one of the most useful physiological biometrics that can be used as a powerful means in personal recognition systems. The major features of the palmprints are palm lines, wrinkles and ridges, and many approaches use them in different ways towards solving the palmprint recognition problem. Here we proposed to use a set of statistical and waveletbased features; statistical to capture...
متن کاملIllumination Invariant Feature Extraction for Multispectral Palmprint Verification
The aim of biometrics is to identify humans from their personal traits more efficiently using devices, algorithms and procedures for applications that require security and authentication. Multispectral image analysis has gained importance due to its potential for accurate and faster recognition performance. In this paper, Multispectral palmprint biometric system is proposed which uses the fusio...
متن کاملRank-level Fusion of Multispectral Palmprints
This paper presents an approach for the personal authentication using rank-level fusion of multispectral palmprints, instead of using multiple biometric modalities and multiple matchers. The rank level fusion involving the non linear combination of hyperbolic tangent functions gives the best recognition rate for the Rank 1 obtained from two types of features, viz., sigmoid and fuzzy. The result...
متن کاملMultispectral image fusion for illumination-invariant palmprint recognition
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode ...
متن کامل