Proportional mean residual life model for right-censored length-biased data.
نویسندگان
چکیده
To study disease association with risk factors in epidemiologic studies, cross-sectional sampling is often more focused and less costly for recruiting study subjects who have already experienced initiating events. For time-to-event outcome, however, such a sampling strategy may be length biased. Coupled with censoring, analysis of length-biased data can be quite challenging, due to induced informative censoring in which the survival time and censoring time are correlated through a common backward recurrence time. We propose to use the proportional mean residual life model of Oakes & Dasu (Biometrika77, 409-10, 1990) for analysis of censored length-biased survival data. Several nonstandard data structures, including censoring of onset time and cross-sectional data without follow-up, can also be handled by the proposed methodology.
منابع مشابه
Inference on Quantile Residual Life for Length-biased Survival Data
Length biased data occurs when a prevalent sampling is used to recruit subjects into a study that investigates the time from an initial event to a terminal event. Such data are usually left-truncated and right-censored. While there have been accurate and efficient methods to estimate the survival function, not much work has been done regarding the estimation of the residual life time distributi...
متن کاملStatistical methods for analyzing right-censored length-biased data under cox model.
Length-biased time-to-event data are commonly encountered in applications ranging from epidemiological cohort studies or cancer prevention trials to studies of labor economy. A longstanding statistical problem is how to assess the association of risk factors with survival in the target population given the observed length-biased data. In this article, we demonstrate how to estimate these effect...
متن کاملA unified framework for fitting Bayesian semiparametric models to arbitrarily censored survival data, including spatially-referenced data
A comprehensive, unified approach to modeling arbitrarily censored spatial survival data is presented for the three most commonly-used semiparametric models: proportional hazards, proportional odds, and accelerated failure time. Unlike many other approaches, all manner of censored survival times are simultaneously accommodated including uncensored, interval censored, current-status, left and ri...
متن کاملInference for the Proportional Hazards Family under Progressive Type-II Censoring
In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...
متن کاملUsing of frailty model baseline proportional hazard rate in Real Data Analysis
Many populations encountered in survival analysis are often not homogeneous. Individuals are flexible in their susceptibility to causes of death, response to treatment and influence of various risk factors. Ignoring this heterogeneity can result in misleading conclusions. To deal with these problems, the proportional hazard frailty model was introduced. In this paper, the frailty model is ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrika
دوره 99 4 شماره
صفحات -
تاریخ انتشار 2012