Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.

نویسندگان

  • Christina S Strom
  • Xiang Yang Liu
  • Zongchao Jia
چکیده

The crystal growth process by which fish antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) modify the ice morphology is analyzed in the AFP-ice system. A newly identified AFP-induced surface reconstruction mechanism enables one-dimensional helical and irregular globular ice binding surfaces to stabilize secondary, kinetically less stable ice surfaces with variable face indices. Not only are the relative growth rates controlled by the IBS engagement but also the secondary face indices themselves become adjusted in the process of maximizing the AFP-substrate interaction, through attaining the best structural match. The theoretical formulation leads to comprehensive agreement with experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antifreeze Protein-induced Morphological Modification Mechanisms

The mechanisms by which the antifreeze protein (AFP) modifies the ice morphology are identified precisely as surface poisoning by the ice binding surface (IBS) of insect AFPs and as bridge-induced surface reconstruction by the IBS of fish AFPs and antifreeze glycoproteins. The primary surfaces of hexagonal ice have predetermined face indices. The “two-dimensional” insect type IBS has regularly ...

متن کامل

Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?

The antifreeze protein (AFP) reduces the growth rates of the ice crystal facets. In that process the ice morphology undergoes a modification. An AFP-induced surface pinning mechanism, through matching of periodic bond chains in two dimensions, enables two-dimensional regular ice-binding surfaces (IBSs) of the insect AFPs to engage a certain class of ice surfaces, called primary surfaces. They a...

متن کامل

Interactions of β-Helical Antifreeze Protein Mutants with Ice

The fold of the -helical antifreeze protein from Tenebrio molitor (TmAFP) proved to be surprisingly tolerant of multiple amino acid substitutions, enabling the construction of a panel of mutants displaying grids of single amino acid types in place of the threonines on the ice-binding face. These mutants, maintaining the regularity of amino acid spacing found in the wildtype protein but with dif...

متن کامل

Quantitative and qualitative analysis of type III antifreeze protein structure and function.

Some cold water marine fishes avoid cellular damage because of freezing by expressing antifreeze proteins (AFPs) that bind to ice and inhibit its growth; one such protein is the globular type III AFP from eel pout. Despite several studies, the mechanism of ice binding remains unclear because of the difficulty in modeling the AFP-ice interaction. To further explore the mechanism, we have determi...

متن کامل

Superheating of ice crystals in antifreeze protein solutions.

It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 1  شماره 

صفحات  -

تاریخ انتشار 2005