Computing Persistent Homology via Discrete Morse Theory
نویسندگان
چکیده
This report provides theoretical justification for the use of discrete Morse theory for the computation of homology and persistent homology, an overview of the state of the art for the computation of discrete Morse matchings and motivation for an interest in these computations, particularly from the point of view of topological data analysis. Additionally, a new simulated annealing based method for computing discrete Morse matchings is presented. For several problem instances this outperforms the best known heuristics for the task. The computation of homology and persistent homology has become an important task in computational topology, with applications in fields such as topological data analysis, computer vision and materials science. Unfortunately computing homology is currently infeasible for large input complexes. Discrete Morse theory enables the preprocessing of homology computation by reducing the size of the input complexes. This is advantageous from a memory and performance point of view. The key to making efficient use of discrete Morse theory is the quick computation of optimal, or good, discrete Morse matchings.
منابع مشابه
Discrete Morse Theory for Computing Cellular Sheaf Cohomology
Sheaves and sheaf cohomology are powerful tools in computational topology, greatly generalizing persistent homology. We develop an algorithm for simplifying the computation of cellular sheaf cohomology via (discrete) Morse-theoretic techniques. As a consequence, we derive efficient techniques for distributed computation of (ordinary) cohomology of a cell complex.
متن کاملComputing homology and persistent homology using iterated Morse decomposition
In this paper we present a new approach to computing homology (with field coefficients) and persistent homology. We use concepts from discrete Morse theory, to provide an algorithm which can be expressed solely in terms of simple graph theoretical operations. We use iterated Morse decomposition, which allows us to sidetrack many problems related to the standard discrete Morse theory. In particu...
متن کاملMatroid Filtrations and Computational Persistent Homology
This technical report introduces a novel approach to efficient computation in homological algebra over fields, with particular emphasis on computing the persistent homology of a filtered topological cell complex. The algorithms here presented rely on a novel relationship between discrete Morse theory, matroid theory, and classical matrix factorizations. We provide background, detail the algorit...
متن کاملReducing complexes in multidimensional persistent homology theory
The Forman’s discrete Morse theory appeared to be useful for providing filtration–preserving reductions of complexes in the study of persistent homology. So far, the algorithms computing discrete Morse matchings have only been used for one–dimensional filtrations. This paper is perhaps the first attempt in the direction of extending such algorithms to multidimensional filtrations. Initial frame...
متن کاملMorse Theory for Filtrations and Efficient Computation of Persistent Homology
We introduce an efficient preprocessing algorithm to reduce the number of cells in a filtered cell complex while preserving its persistent homology groups. The technique is based on an extension of combinatorial Morse theory from complexes to filtrations.
متن کامل