Greedy low-rank methods for solving general linear matrix equations‡

نویسندگان

  • Daniel Kressner
  • Petar Sirković
چکیده

This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines greedy low-rank techniques with Galerkin projection and preconditioned gradients. In turn, only linear systems of size m × m and n × n need to be solved. Moreover these linear systems inherit the sparsity of the coefficient matrices, which allows to address linear matrix equations as large as m = n = O(10). Numerical experiments demonstrate that the proposed methods perform well for generalized Lyapunov equations. Even for the case of standard Lyapunov equations our methods can be advantageous, as we do not need to assume that C has low rank.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated low-rank methods for solving general linear matrix equations

This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...

متن کامل

ABS-Type Methods for Solving $m$ Linear Equations in $frac{m}{k}$ Steps for $k=1,2,cdots,m$

‎The ABS methods‎, ‎introduced by Abaffy‎, ‎Broyden and Spedicato‎, ‎are‎‎direct iteration methods for solving a linear system where the‎‎$i$-th iteration satisfies the first $i$ equations‎, ‎therefore a‎ ‎system of $m$ equations is solved in at most $m$ steps‎. ‎In this‎‎paper‎, ‎we introduce a class of ABS-type methods for solving a full row‎‎rank linear equations‎, ‎w...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

Global conjugate gradient method for solving large general Sylvester matrix equation

In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and  $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$  is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014