Exact algorithms and APX-hardness results for geometric packing and covering problems
نویسندگان
چکیده
We study several geometric set cover and set packing problems involving configurations of points and geometric objects in Euclidean space. We show that it is APX-hard to compute a minimum cover of a set of points in the plane by a family of axis-aligned fat rectangles, even when each rectangle is an ǫ-perturbed copy of a single unit square. We extend this result to several other classes of objects including almost-circular ellipses, axis-aligned slabs, downward shadows of line segments, downward shadows of graphs of cubic functions, fat semi-infinite wedges, 3-dimensional unit balls, and axis-aligned cubes, as well as some related hitting set problems. We also prove the APX-hardness of a related family of discrete set packing problems. Our hardness results are all proven by encoding a highly structured minimum vertex cover problem which we believe may be of independent interest. In contrast, we give a polynomial-time dynamic programming algorithm for geometric set cover where the objects are pseudodisks containing the origin or are downward shadows of pairwise 2-intersecting x-monotone curves. Our algorithm extends to the weighted case where a minimum-cost cover is required. We give similar algorithms for several related hitting set and discrete packing problems.
منابع مشابه
Hardness of approximation for orthogonal rectangle packing and covering problems
Bansal and Sviridenko [4] proved that there is no asymptotic PTAS for 2-dimensional Orthogonal Bin Packing (without rotations), unless P = NP. We show that similar approximation hardness results hold for several 2and 3-dimensional rectangle packing and covering problems even if rotations by ninety degrees are allowed. Moreover, for some of these problems we provide explicit lower bounds on asym...
متن کاملExact Algorithms and APX-Hardness Results for Geometric Set Cover
We study several geometric set cover problems in which the goal is to compute a minimum cover of a given set of points in Euclidean space by a family of geometric objects. We give a short proof that this problem is APX-hard when the objects are axis-aligned fat rectangles, even when each rectangle is an ǫ-perturbed copy of a single unit square. We extend this result to several other classes of ...
متن کاملOn the approximability of covering points by lines and related problems
Given a set P of n points in the plane, Covering Points by Lines is the problem of finding a minimum-cardinality set L of lines such that every point p ∈ P is incident to some line l ∈ L. As a geometric variant of Set Cover, Covering Points by Lines is still NP-hard. Moreover, it has been proved to be APX-hard, and hence does not admit any polynomial-time approximation scheme unless P = NP. In ...
متن کاملApproximation Algorithms for Geometric Covering Problems for Disks and Squares
Geometric covering is a well-studied topic in computational geometry. We study three covering problems: Disjoint Unit-Disk Cover, Depth-(≤ K) Packing and Red-Blue UnitSquare Cover. In the Disjoint Unit-Disk Cover problem, we are given a point set and want to cover the maximum number of points using disjoint unit disks. We prove that the problem is NP-complete and give a polynomial-time approxim...
متن کاملTheory and Application of Width Bounded Geometric Separator
We introduce the notion of the width bounded geometric separator and develop the techniques for the existence of the width bounded separator in any d-dimensional Euclidean space. The separator is applied in obtaining 2 √ n) time exact algorithms for a class of NPcomplete geometric problems, whose previous algorithms take n √ n) time [2,5,1]. One of those problems is the well known disk covering...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 47 شماره
صفحات -
تاریخ انتشار 2014