Ab initio electron scattering cross-sections and transport in liquid xenon

نویسندگان

  • M C Bordage
  • S F Biagi
چکیده

Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac–Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10−4–1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase crosssections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab-initio electron scattering cross-sections and transport in liquid xenon

Ab-initio fully differential cross-sections for electrons scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework [1] which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full aniso...

متن کامل

Electron scattering and transport in liquid argon.

The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann's equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a n...

متن کامل

Electron scattering in HCl: An improved nonlocal resonance model

We present an improved nonlocal resonance model for electron-HCl collisions. The short-range part of the model is fitted to ab initio electron-scattering eigenphase sums calculated using the Schwinger multichannel method, while the long-range part is based on the ab initio potential-energy curve of the bound anion HCl−. This model significantly improves the agreement of nonlocal resonance calcu...

متن کامل

Ab initio cross sections for the excitation of the b ' Z : state of H , by electron impact in the distorted - wave approximation ?

We present differential cross sections for the x 'Zg + b 3Zu transition in H, at 15 eV incident electron energy. The cross sections are computed in the distorted-wave approximation, using the random-phase approximation for the electronic transition density and a discrete basis set technique for obtaining the distorted waves. Our cross sections are found to be in good agreement with experimental...

متن کامل

Ab initio calculation of inelastic scattering.

Nonresonant inelastic electron and X-ray scattering cross sections for bound-to-bound transitions in atoms and molecules are calculated directly from ab initio electronic wavefunctions. The approach exploits analytical integrals of Gaussian-type functions over the scattering operator, which leads to accurate and efficient calculations. The results are validated by comparison to analytical cross...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016