The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans.
نویسندگان
چکیده
We sequenced the V4 and V7 regions of the small-subunit ribosomal RNA (SSU rRNA) from 38 species of branchiopod crustaceans (e.g., Artemia, Daphnia, Triops) representing all eight extant orders. Ancestral large-bodied taxa in the orders Anostraca, Notostraca, Laevicaudata, and Spinicaudata (limnadiids and cyzicids) possess the typical secondary structure in these regions, whereas the spinicaudatan Cyclestheria and all of the cladocerans (Anomopoda, Ctenopoda, Onychopoda, and Haplopoda) possess three unique helices. Although the lengths and primary sequences of the distal ends of these helices are extremely variable, their locations, secondary structures, and primary sequences at the proximal end are conserved, indicating that they are homologous. This evidence supports the classical view that Cladocera is a monophyletic group and that the cyclestheriids are transitional between spinicaudatans and cladocerans. The single origin and persistence since the Permian of the unique cladoceran helices suggests that births and deaths of variable region helices have been rare. The broad range of sequence divergences observed among the cladoceran helices permitted us to make inferences about their evolution. Although their proximal ends are very GC-biased, there is a significant negative correlation between length and GC content due to an increasing proportion of U at their distal ends. Slippage-like processes occurring at unpaired nucleotides or bulges, which are very U-biased, are associated with both helix origin and runaway length expansion. The overall GC contents and lengths of V4 and V7 are highly correlated. More surprisingly, the lengths of these SSU rRNA variable regions are also highly correlated with the length of the large-subunit rRNA expansion segment, D2, indicating that mechanisms affecting length variation do so both across single genes and across genes in the rRNA gene family.
منابع مشابه
Evolution of Hypervariable Regions, V4 and V7, of Insect 18S rRNA and Their Phylogenetic Implications.
We compared primary and secondary structures of V4 (helices E23-2 to E23-5) and V7 (helix 43) regions of 18S rRNAs in insects and the other three major arthropod groups (crustaceans, myriapods, and chelicerates) known so far. We found that the lengths of primary sequences and the shapes of secondary structures of these two hypervariable regions of insect 18S rRNA even at infraclass levels are p...
متن کاملAn overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA.
The V4 region of the small subunit (18S) ribosomal RNA was examined in 72 different sequences representing a broad sample eukaryotic diversity. This domain is the most variable region of the 18S rRNA molecule and ranges in length from ca. 230 to over 500 bases. Based upon comparative analysis, secondary structural models were constructed for all sequences and the resulting generalized model sho...
متن کاملA proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot.
Eukaryotic small ribosomal subunit RNAs contain an area of variable structure, V4, which comprises about 250 nucleotides in most species, whereas the corresponding area in bacterial small ribosomal subunit RNAs consists of about 64 nucleotides folded into a single hairpin. There is no consensus on the secondary structure of area V4 in eukaryotes, about 10 different models having been proposed. ...
متن کاملModelling the secondary structures of slippage-prone hypervariable RNA regions: the example of the tiger beetle 18S rRNA variable region V4.
Variable regions within ribosomal RNAs frequently vary in length as a result of incorporating products of slippage. This makes constructing secondary structure models problematic because base homology is difficult or impossible to establish between species. Here, we model such a region by comparing the results of the MFOLD suboptimal folding algorithm for different species to identify conserved...
متن کاملComparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA.
The secondary structure of V4, the largest variable area of eukaryotic small subunit ribosomal RNA, was re-examined by comparative analysis of 3253 nucleotide sequences distributed over the animal, plant and fungal kingdoms and a diverse set of protist taxa. An extensive search for compensating base pair substitutions and for base covariation revealed that in most eukaryotes the secondary struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 15 11 شماره
صفحات -
تاریخ انتشار 1998