Prediction of Protein Interaction with Neural Network-Based Feature Association Rule Mining
نویسندگان
چکیده
Prediction of protein interactions is one of the central problems in post–genomic biology. In this paper, we present an association rule-based protein interaction prediction method. We adopted neural network to cluster protein interaction data, and used information theory based feature selection method to reduce protein feature dimension. After model training, feature association rules are generated to interaction prediction by decoding a set of learned weights of trained neural network and by mining association rules. For model training, an initial network model was constructed with public Yeast protein interaction data considering their functional categories, set of features, and interaction partners. The prediction performance was compared with traditional simple association rule mining method. The experimental results show that proposed method has about 96.1% interaction prediction accuracy compared to simple association mining approach which achieved about 91.4% accuracy.
منابع مشابه
Prediction of Yeast Protein-Protein Interactions by Neural Feature Association Rule
In this paper, we present an association rule based protein interaction prediction method. We use neural network to cluster protein interaction data and feature selection method to reduce protein feature dimension. After this model training, association rules for protein interaction prediction are generated by decoding a set of learned weights of trained neural network and association rule mini...
متن کامل(Prediction of Implicit Protein–Protein Interaction Using Optimal Associative Feature Rule)
Proteins are known to perform a biological function by interacting with other proteins or compounds. Since protein interaction is intrinsic to most cellular processes, prediction of protein interaction is an important issue in post–genomic biology where abundant interaction data have been produced by many research groups. In this paper, we present an associative feature mining method to predict...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملPrediction of chronic kidney disease in Isfahan with extracting association rules using data mining techniques
Background: Millions of deaths occur around the world each year due to lack of access to appropriate treatment for chronic kidney disease patients. Given the importance and mortality rate of this disease, early and low-cost prediction is very important. The researchers intend to identify chronic kidney disease through the optimal combination of techniques used in different stages of data mining...
متن کاملPrediction of Implicit Protein-Protein Interaction by Optimal Associative Feature Mining
Proteins are known to perform a biological function by interacting with other proteins or compounds. Since protein–protein interaction is intrinsic to most cellular processes, protein interaction prediction is an important issue in post–genomic biology where abundant interaction data has been produced by many research groups. In this paper, we present an associative feature mining method to pre...
متن کامل