The dorsomedial striatum reflects response bias during learning.

نویسندگان

  • Eyal Y Kimchi
  • Mark Laubach
چکیده

Previous studies have established that neurons in the dorsomedial striatum track the behavioral significance of external stimuli, are sensitive to contingencies between actions and outcomes, and show rapid flexibility in representing task-related information. Here, we describe how neural activity in the dorsomedial striatum changes during the initial acquisition of a Go/NoGo task and during an initial reversal of stimulus-response contingencies. Rats made nosepoke responses over delay periods and then received one of two acoustic stimuli. Liquid rewards were delivered after one stimulus (S+) if the rats made a Go response (entering a reward port on the opposite wall of the chamber). If a Go response was made to other stimulus (S-), rats experienced a timeout. On 10% of trials, no stimulus was presented. These trials were used to assess response bias, the animals' tendency to collect reward independent of the stimulus. Response bias increased during the reversal, corresponding to the animals' uncertainty about the stimulus-response contingencies. Most task-modulated neurons fired during the response at the end of the delay period. The fraction of response-modulated neurons was correlated with response bias and neural activity was sensitive to the behavioral response made on the previous trial. During initial task acquisition and initial reversal learning, there was a remarkable change in the percentages of neurons that fired in relation to the task events, especially during withdrawal from the nosepoke aperture. These results suggest that changes in task-related activity in the dorsomedial striatum during learning are driven by the animal's bias to collect rewards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learn...

متن کامل

The influence of NMDA receptors in the dorsomedial striatum on response reversal learning.

In mammals, the dorsomedial striatum is one brain area shown to be critical for the flexible shifting of response patterns. At present, the neurochemical mechanisms that underlie learning during a shift in response patterns are unknown. The present study examined the effects of NMDA competitive antagonist, DL-2-amino-5-phosphonopentanoic acid (AP-5), injected into the dorsomedial striatum on th...

متن کامل

Differential involvement of M1-type and M4-type muscarinic cholinergic receptors in the dorsomedial striatum in task switching.

Previous experiments have demonstrated that the rat dorsomedial striatum is one brain area that plays a crucial role in learning when conditions require a shift in strategies. Further evidence indicates that muscarinic cholinergic receptors in this brain area support adaptations in behavioral responses. Unknown is whether specific muscarinic receptor subtypes in the dorsomedial striatum contrib...

متن کامل

Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching.

Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for conditional discrimination performance in which a swi...

متن کامل

Cytoskeletal determinants of stimulus-response habits.

Both humans and rodents can learn to associate specific actions with their outcomes, but with repeated performance or exposure to pathological stimuli, such as drugs of abuse, behaviors assume stimulus-elicited, or "habitual," qualities. Psychostimulants remodel dorsal striatal neurons, critical determinants of decision-making strategies, but cytoskeletal mechanisms associated with drug-induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 47  شماره 

صفحات  -

تاریخ انتشار 2009