A Multiscale Method Coupling Network and Continuum Models in Porous Media I: Steady-State Single Phase Flow

نویسندگان

  • Jay Chu
  • Björn Engquist
  • Masa Prodanovic
  • Yen-Hsi Richard Tsai
چکیده

We propose a numerical multiscale method for coupling a conservation law for mass at the continuum scale with a discrete network model that describes the microscale flow in a porous medium. In this work we focus on coupling pressure equations. Evaluating pressure from a detailed network model over a large physical domain is typically computationally very expensive. We assume that over the same physical domain there exists an effective mass conservation equation at the continuum scale which could have been solved efficiently if the equation was explicitly given. Our coupling method uses local simulations on sampled microscale domains to evaluate the continuum equation and thus solve for the pressure in the full domain. We allow nonlinearity in the network model as well as the mass conservation equation. Convergence of the coupling method is analyzed. In the case where classical homogenization applies, we prove convergence of the proposed multiscale solutions to the homogenized equations. Numerical simulations are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiscale method coupling network and continuum models in porous media II – single- and two-phase flows

Modeling and computing transport in the subsurface is a difficult problem that requires good understanding of the relations among different processes at various different length and time scales, and their effective properties. Already at the pore scale, ranging from a few micrometers to millimeters, direct flow simulation in a detailed medium geometry assuming Stokes flow is extremely costly. N...

متن کامل

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

بکارگیری مدل های مختلف کوپل شدگی سیال - جسم برای بررسی مشخصه های ارتعاشی در ناحیه قفل شدگی

In this paper, several models of structure-fluid coupling are employed to investigate on the vibration behavior of the structure. Using basic equations of vibration and employing a mathematical model, a single degree of freedom system is analyzed. Some parameters of the mathematical model are obtained from test. To examine structure-flow interaction, coupled system of nonlinear second-order dif...

متن کامل

A New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media

Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012