Preserving Personalized Pagerank in Subgraphs
نویسندگان
چکیده
Choosing a subgraph that can concisely represent a large real-world graph is useful in many scenarios. The usual strategy employed is to sample nodes so that the induced subgraph matches the original graph’s degree distribution, clustering coefficient, etc., but no attempt is made to preserve fine-grained relationships between nodes, which are vital for applications like clustering, classification, and ranking. In this work, we model such relationships via the notion of Personalized PageRank Value (PPV). We show that induced subgraphs output by current sampling methods do not preserve PPVs, and propose algorithms for creating PPV-preserving subgraphs on any given subset of graph nodes. Experiments on three large real-world graphs show that the subgraphs created by our method improve upon induced subgraphs in terms of preserving PPVs, clustering accuracy, and maintaining basic graph properties.
منابع مشابه
Preserving Pairwise Relationships in Subgraphs
Choosing a subgraph that can concisely represent a large real-world graph is useful in many scenarios. The usual strategy employed is to sample nodes so that the induced subgraph matches the original graph’s degree distribution, clustering coefficient, etc., but no attempt is made to preserve fine-grained relationships between nodes, which are vital for applications like clustering, classificat...
متن کاملLocal Community Detection in Dynamic Graphs Using Personalized Centrality
Analyzing massive graphs poses challenges due to the vast amount of data available. Extracting smaller relevant subgraphs allows for further visualization and analysis that would otherwise be too computationally intensive. Furthermore, many real data sets are constantly changing, and require algorithms to update as the graph evolves. This work addresses the topic of local community detection, o...
متن کاملAn Application of Personalized PageRank Vectors: Personalized Search Engine
We introduce a tool which is an application of personalized pagerank vectors such as personalized search engines. We use pre-computed pagerank vectors to rank the search results in favor of user preferences. We describe the design and architecture of our tool. By using pre-computed personalized pagerank vectors we generate search results biased to user preferences such as top-level domain and r...
متن کاملPersonalized PageRank with Node-Dependent Restart
Personalized PageRank is an algorithm to classify the improtance of web pages on a user-dependent basis. We introduce two generalizations of Personalized PageRank with nodedependent restart. The first generalization is based on the proportion of visits to nodes before the restart, whereas the second generalization is based on the probability of visited node just before the restart. In the origi...
متن کاملOn the Localization of the Personalized PageRank of Complex Networks
In this paper new results on personalized PageRank are shown. We consider directed graphs that may contain dangling nodes. The main result presented gives an analytical characterization of all the possible values of the personalized PageRank for any node.We use this result to give a theoretical justification of a recent model that uses the personalized PageRank to classify users of Social Netwo...
متن کامل