Nathanson heights in finite vector spaces

نویسنده

  • Joshua Batson
چکیده

Let p be a prime, and let Zp denote the field of integers modulo p. The Nathanson height of a point v ∈ Z p is the sum of the least nonnegative integer representatives of its coordinates. The Nathanson height of a subspace V ⊆ Z p is the least Nathanson height of any of its nonzero points. In this paper, we resolve a conjecture of Nathanson [M. B. Nathanson, Heights on the finite projective line, International Journal of Number Theory, to appear], showing that on subspaces of Z p of codimension one, the Nathanson height function can only take values about p, p/2, p/3, . . . . We show this by proving a similar result for the coheight on subsets of Zp, where the coheight of A ⊆ Zp is the minimum number of times A must be added to itself so that the sum contains 0. We conjecture that the Nathanson height function has a similar constraint on its range regardless of the codimension, and produce some evidence that supports this conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Nathanson Heights to Arbitrary Finite Fields

In this paper, we extend the definition of the Nathanson height from points in projective spaces over Fp to points in projective spaces over arbitrary finite fields. If [a0 : . . . : an] ∈ P(Fp), then the Nathanson height is hp([a0 : a1 : . . . : ad]) = min b∈Fp d ∑ i=0 H(bai) where H(ai) = |N(ai)|+p(deg(ai)−1) with N the field norm and |N(ai)| the element of {0, 1, . . . , p− 1} congruent to N...

متن کامل

Heights on the Finite Projective Line

Define the height function h(a) = min{k + (ka mod p) : k = 1, 2, . . . , p − 1} for a ∈ {0, 1, . . . , p − 1.} It is proved that the height has peaks at p, (p+1)/2, and (p+c)/3, that these peaks occur at a = [p/3], (p−3)/2, (p− 1)/2, [2p/3], p − 3, p− 2, and p − 1, and that h(a) ≤ p/3 for all other values of a. 1. Heights on finite projective spaces Let p be an odd prime and let Fp = Z/pZ and F...

متن کامل

Cyclic wavelet systems in prime dimensional linear vector spaces

Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.

متن کامل

Heights in Finite Projective Space, and a Problem on Directed Graphs

Let Fp = Z/pZ. The height of a point a = (a1, . . . , ad) ∈ F d p is hp(a) = min n Pd i=1(kai mod p) : k = 1, . . . , p − 1 o . Explicit formulas and estimates are obtained for the values of the height function in the case d = 2, and these results are applied to the problem of determining the minimum number of edges the must be deleted from a finite directed graph so that the resulting subgraph...

متن کامل

LOCAL BASES WITH STRATIFIED STRUCTURE IN $I$-TOPOLOGICAL VECTOR SPACES

In this paper, the concept of {sl local base with  stratifiedstructure} in $I$-topological vector spaces is introduced. Weprove that every $I$-topological vector space has a balanced localbase with stratified structure. Furthermore, a newcharacterization of $I$-topological vector spaces by means of thelocal base with stratified structure is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008