Deconvoluting Kernel Density Estimators
نویسنده
چکیده
This paper considers estimation of a continuous bounded probability density when observations from the density are contaminated by additive measurement errors having a known distribution. Properties of the estimator obtained by deconvolving a kernel estimator of the observed data are investigated. When the kernel used is sufficiently smooth the deconvolved estimator is shown to be pointwise consistent and bounds on its integrated mean squared error are derived. Very weak assumptions are made on the measurement-error density thereby permitting a comparison of the effects of different types of measurement error on the deconvolved estimator.
منابع مشابه
Deconvolving a Density from Contaminated Dependent Observations*
The paper studies the performance of deconvoluting kernel density estimators for estimating the marginal density of a linear process. The data stem from the linear process and are partially, respectively fully contaminated by lid errors with a known distribution. If 1-p denotes the proportion of contaminated observations (and it is , of course, unknown which observations are contaminated and wh...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملThe Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel
One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...
متن کامل