Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia
نویسندگان
چکیده
BACKGROUND During ischemic stroke (IS), adenosine 5'-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. METHODS Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. RESULTS EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. CONCLUSION Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA treatment after ischemic stroke accompanied by the improved motor and memory behavior performance.
منابع مشابه
Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.
Cognitive impairment is a serious mental deficit following stroke that severely affects the quality of life of stroke survivors. Nuclear factor‑κB (NF-κB)-mediated neuronal cell apoptosis is involved in the development of post-stroke cognitive impairment; therefore, it has become a promising target for the treatment of impaired cognition. Acupuncture at the Baihui (DU20) and Shenting (DU24) acu...
متن کاملCorrection: Bone Fracture Pre-Ischemic Stroke Exacerbates Ischemic Cerebral Injury in Mice
Ischemic stroke is a devastating complication of bone fracture. Bone fracture shortly after stroke enhances stroke injury by augmenting inflammation. We hypothesize that bone fracture shortly before ischemic stroke also exacerbates ischemic cerebral injury. Tibia fracture was performed 6 or 24 hours before permanent middle cerebral artery occlusion (pMCAO) on C57BL/6J mice or Ccr2RFP/+Cx3cr1GFP...
متن کاملP 95: Result of Alcohol Excessive Drinking in the Brain and Varying Mental Health Side Effects
Alcohol directly affects astroglial cell function, including inflammation-related activity. And it also affects microglial cell development and function in specific ways that interfere with microglial interactions with the immune system and with neurons. Neuroinflammatory processes might be involved in alcohol-induced brain damage. Alcohol use, misuse and getting used to it causes differe...
متن کاملMicroglial CR3 Activation Triggers Long-Term Synaptic Depression in the Hippocampus via NADPH Oxidase
Complement receptor 3 (CR3) activation in microglia is involved in neuroinflammation-related brain disorders and pruning of neuronal synapses. Hypoxia, often observed together with neuroinflammation in brain trauma, stroke, and neurodegenerative diseases, is thought to exacerbate inflammatory responses and synergistically enhance brain damage. Here we show that when hypoxia and an inflammatory ...
متن کاملPropofol Protects Against Focal Cerebral Ischemia via Inhibition of Microglia-Mediated Proinflammatory Cytokines in a Rat Model of Experimental Stroke
Ischemic stroke induces microglial activation and release of proinflammatory cytokines, contributing to the expansion of brain injury and poor clinical outcome. Propofol has been shown to ameliorate neuronal injury in a number of experimental studies, but the precise mechanisms involved in its neuroprotective effects remain unclear. We tested the hypothesis that propofol confers neuroprotection...
متن کامل