A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis

نویسندگان

  • Pengcheng Li
  • Fanjun Chen
  • Hongguang Cai
  • Jianchao Liu
  • Qingchun Pan
  • Zhigang Liu
  • Riliang Gu
  • Guohua Mi
  • Fusuo Zhang
  • Lixing Yuan
چکیده

That root system architecture (RSA) has an essential role in nitrogen acquisition is expected in maize, but the genetic relationship between RSA and nitrogen use efficiency (NUE) traits remains to be elucidated. Here, the genetic basis of RSA and NUE traits was investigated in maize using a recombination inbred line population that was derived from two lines contrasted for both traits. Under high-nitrogen and low-nitrogen conditions, 10 NUE- and 9 RSA-related traits were evaluated in four field environments and three hydroponic experiments, respectively. In contrast to nitrogen utilization efficiency (NutE), nitrogen uptake efficiency (NupE) had significant phenotypic correlations with RSA, particularly the traits of seminal roots (r = 0.15-0.31) and crown roots (r = 0.15-0.18). A total of 331 quantitative trait loci (QTLs) were detected, including 184 and 147 QTLs for NUE- and RSA-related traits, respectively. These QTLs were assigned into 64 distinct QTL clusters, and ~70% of QTLs for nitrogen-efficiency (NUE, NupE, and NutE) coincided in clusters with those for RSA. Five important QTLs clusters at the chromosomal regions bin1.04, 2.04, 3.04, 3.05/3.06, and 6.07/6.08 were found in which QTLs for both traits had favourable effects from alleles coming from the large-rooted and high-NupE parent. Introgression of these QTL clusters in the advanced backcross-derived lines conferred mean increases in grain yield of ~14.8% for the line per se and ~15.9% in the testcross. These results reveal a significant genetic relationship between RSA and NUE traits, and uncover the most promising genomic regions for marker-assisted selection of RSA to improve NUE in maize.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System

Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection...

متن کامل

Genetic dissection of maize seedling root system architecture traits using an ultra‐high density bin‐map and a recombinant inbred line population

Maize (Zea mays) root system architecture (RSA) mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study, a set of 204 recombinant inbred lines (RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 × Chang7-2), genotyped by sequencing (GBS) and evaluated as seedlings for 24 RSA related traits divided into primary, seminal and total ro...

متن کامل

شناسایی QTLهای مرتبط با تعدادی از خصوصیات مورفولوژیکی ژنوتیپ‌های برنج تحت تنش کمبود نیتروژن

In order to detect the QTL associated with nitrogen-deficiency tolerance at seedling stage, a population of 96 lines derived from Ahlami Tarom and Neda cross were studied at 2014. For genetic linkage map construction, 30 SSR and 15 ISSR makers were used. The resulted linkage map covered 1411.3 cM of rice genome with an average of 15.34 cM distance between two markers. A total of 37 QTLs were id...

متن کامل

Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize.

To enhance our understanding of the genetic basis of nitrogen use efficiency in maize (Zea mays), we have developed a quantitative genetic approach by associating metabolic functions and agronomic traits to DNA markers. In this study, leaves of vegetative recombinant inbred lines of maize, already assessed for their agronomic performance, were analyzed for physiological traits such as nitrate c...

متن کامل

Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize IBM mapping population.

Understanding the genetic basis of nitrogen and carbon metabolism will accelerate the development of plant varieties with high yield and improved nitrogen use efficiency. A robotized platform was used to measure the activities of 10 enzymes from carbon and nitrogen metabolism in the maize (Zea mays) intermated B73 × Mo17 mapping population, which provides almost a 4-fold increase in genetic map...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015