Red Queen Dynamics with Non-Standard Fitness Interactions
نویسندگان
چکیده
Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating these dynamics have assumed rather simple models of genetic interactions between hosts and parasites. Here, we assess the robustness of earlier theoretical predictions about the Red Queen with respect to the underlying host-parasite interactions. To this end, we created large numbers of random interaction matrices, analysed the resulting dynamics through simulation, and ascertained whether recombination was favoured or disfavoured. We observed Red Queen dynamics in many of our simulations provided the interaction matrices exhibited sufficient 'antagonicity'. In agreement with previous studies, strong selection on either hosts or parasites favours selection for increased recombination. However, fast changes in the sign of linkage disequilibrium or epistasis were only infrequently observed and do not appear to be a necessary condition for the Red Queen hypothesis to work. Indeed, recombination was often favoured even though the linkage disequilibrium remained of constant sign throughout the simulations. We conclude that Red Queen-type dynamics involving persistent fluctuations in host and parasite genotype frequencies appear to not be an artefact of specific assumptions about host-parasite fitness interactions, but emerge readily with the general interactions studied here. Our results also indicate that although recombination is often favoured, some of the factors previously thought to be important in this process such as linkage disequilibrium fluctuations need to be reassessed when fitness interactions between hosts and parasites are complex.
منابع مشابه
Red Queen strange attractors in host–parasite replicator gene-for-gene coevolution
We study a continuous time model describing gene-for-gene, host–parasite interactions among self-replicating macromolecules evolving in both neutral and rugged fitness landscapes. Our model considers polymorphic genotypic populations of sequences with 3 bits undergoing mutation and incorporating a ‘‘type II’’ non-linear functional response in the host–parasite interaction. We show, for both fit...
متن کاملCoevolution of slow-fast populations: evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics.
We study the interplay of ecological and evolutionary dynamics in communities composed of populations with contrasting time-scales. In such communities, genetic variation of individual traits can cause population transitions between stationary and cyclic ecological regimes, hence abrupt variations in fitness. Such abrupt variations raise ridges in the adaptive landscape, where the populations a...
متن کاملTracking the Red Queen: Measurements of Adaptive Progress in Co-Evolutionary Simulations
Abst rac t . Co-evolution can give rise to the "Red Queen effect", where interacting populations alter each other's fitness landscapes. The Red Queen effect significantly complicates any measurement of co-evolutionary progress, introducing fitness ambiguities where improvements in performance of co-evolved individuals Call appear as a decline or stasis in the usual measures of evolutionary prog...
متن کاملRed Queen Coevolution on Fitness Landscapes
Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve exploring their fitness landscapes. Coevolution involves the coupling of species fitness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution ...
متن کاملRunning with the Red Queen: the role of biotic conflicts in evolution
What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuatin...
متن کامل