Ribosome-DnaK interactions in relation to protein folding.

نویسندگان

  • Jaydip Ghosh
  • Arunima Basu
  • Saumen Pal
  • Saheli Chowdhuri
  • Arpita Bhattacharya
  • Debashis Pal
  • Dhruba K Chattoraj
  • Chanchal DasGupta
چکیده

Bacterial ribosomes or their 50S subunit can refold many unfolded proteins. The folding activity resides in domain V of 23S RNA of the 50S subunit. Here we show that ribosomes can also refold a denatured chaperone, DnaK, in vitro, and the activity may apply in the folding of nascent DnaK polypeptides in vivo. The chaperone was unusual as the native protein associated with the 50S subunit stably with a 1:1 stoichiometry in vitro. The binding site of the native protein appears to be different from the domain V of 23S RNA, the region with which denatured proteins interact. The DnaK binding influenced the protein folding activity of domain V modestly. Conversely, denatured protein binding to domain V led to dissociation of the native chaperone from the 50S subunit. DnaK thus appears to depend on ribosomes for its own folding, and upon folding, can rebind to ribosome to modulate its general protein folding activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins.

In Escherichia coli, the ribosome-associated Trigger Factor (TF) cooperates with the DnaK system in the folding of newly synthesized cytosolic polypeptides. Here we investigated the functional relationship of TF and DnaK by comparing various functional properties of both chaperones. First, we analyzed the ability of TF and DnaK to associate with nascent polypeptides and full-length proteins rel...

متن کامل

Polypeptide Flux through Bacterial Hsp70 DnaK Cooperates with Trigger Factor in Chaperoning Nascent Chains

A role for DnaK, the major E. coli Hsp70, in chaperoning de novo protein folding has remained elusive. Here we show that under nonstress conditions DnaK transiently associates with a wide variety of nascent and newly synthesized polypeptides, with a preference for chains larger than 30 kDa. Deletion of the nonessential gene encoding trigger factor, a ribosome-associated chaperone, results in a ...

متن کامل

In vivo analysis of the overlapping functions of DnaK and trigger factor.

Trigger factor (TF) is a ribosome-bound protein that combines catalysis of peptidyl-prolyl isomerization and chaperone-like activities in Escherichia coli. TF was shown to cooperate with the DnaK (Hsp70) chaperone machinery in the folding of newly synthesized proteins, and the double deletion of the corresponding genes (tig and dnaK) exhibited synthetic lethality. We used a detailed genetic app...

متن کامل

Trigger Factor and DnaK possess overlapping substrate pools and binding specificities.

Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximate...

متن کامل

Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding.

How nascent polypeptides emerging from ribosomes fold into functional structures is poorly understood. Here, we monitor disulfide bond formation, protease resistance, and enzymatic activity in nascent polypeptides to show that in close proximity to the ribosome, conformational space and kinetics of folding are restricted. Folding constraints decrease incrementally with distance from the ribosom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 48 6  شماره 

صفحات  -

تاریخ انتشار 2003