International Assessment of Research and Development in Brain-computer Interfaces
نویسندگان
چکیده
Brain-computer interface (BCI) research deals with establishing communication pathways between the brain and external devices. BCI systems can be broadly classified depending on the placement of the electrodes used to detect and measure neurons firing in the brain: in invasive systems, electrodes are inserted directly into the cortex; in noninvasive systems, they are placed on the scalp and use electroencephalography or electrocorticography to detect neuron activity. This WTEC study was designed to gather information on worldwide status and trends in BCI research and to disseminate it to government decisionmakers and the research community. The study reviewed and assessed the state of the art in sensor technology, the bioticabiotic interface and biocompatibility, data analysis and modeling, hardware implementation, systems engineering, functional electrical stimulation, noninvasive communication systems, and cognitive and emotional neuroprostheses in academic research and industry. The WTEC panel identified several major trends in current and evolving BCI research in North America, Europe, and Asia. First, BCI research throughout the world is extensive, with the magnitude of that research clearly on the rise. Second, BCI research is rapidly approaching a level of first-generation medical practice; moreover, BCI research is expected to rapidly accelerate in nonmedical arenas of commerce as well, particularly in the gaming, automotive, and robotics industries. Third, the focus of BCI research throughout the world is decidedly uneven, with invasive BCIs almost exclusively centered in North America, noninvasive BCI systems evolving primarily from European and Asian efforts, and the integration of BCIs and robotics systems championed by Asian research programs. In terms of funding, BCI and brain-controlled robotics programs have been a hallmark of recent European research and technological development. The range and investment levels of multidisciplinary, multinational, multilaboratory programs in Europe appear to far exceed that of most university and government-funded BCI programs in the United States and Canada. Although several U.S. government programs are advancing neural prostheses and BCIs, private sources have yet to make a major impact on BCI research in North America generally. However, the U.S. Small Business Innovative Research grants (SBIRs) and Small Technology Transfer Research grants (STTRs) have been effective in promoting transition from basic research to precommercialized prototypes. In Asia, China is investing heavily in biological sciences and engineering in general, and the extent of investment in BCI and BCI-related research has grown particularly rapidly; still, the panel observed little coordination between various programs. Japanese universities, research institutes, and laboratories also are increasing their investment in BCI research. Japan is especially vigorous in pursuing nonmedical applications and exploiting its expertise in BCI-controlled robotics. The WTEC panel concludes that there are abundant and fertile opportunities for worldwide collaborations in BCI research and allied fields. WORLD TECHNOLOGY EVALUATION CENTER, INC. (WTEC) R. D. Shelton, President Michael DeHaemer, Executive Vice President Geoffrey M. Holdridge, Vice President for Government Services David Nelson, Vice President for Development Ben Benokraitis, Assistant Vice President Y. T. Chien, Senior Fellow Other WTEC Staff Members and Subcontractors Involved in this Study Hassan Ali, Director of International Study Operations Grant Lewison (Evaluametrics, Ltd.), Advance Contractor, Europe Gerald Hane (Globalvation), Advance Contractor, Asia Roan Horning, website development Maria L. DeCastro, manuscript development and support Patricia M.H. Johnson, Director of Publications Halyna Paikoush, Event Planner and Office Manager Richard E. Morrison, Editor
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملComparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کاملWorkshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.
The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, r...
متن کامل