Quasi-isometric Classification of Some High Dimensional Right-angled Artin Groups
نویسندگان
چکیده
In this note we give the quasi-isometry classification for a class of right angled Artin groups. In particular, we obtain the first such classification for a class of Artin groups with dimension larger than 2; our families exist in every dimension.
منابع مشابه
Quasi-isometric Classification of Graph Manifold Groups
We show that the fundamental groups of any two closed irreducible nongeometric graph manifolds are quasi-isometric. We also classify the quasi-isometry types of fundamental groups of graph manifolds with boundary in terms of certain finite twocolored graphs. A corollary is the quasi-isometric classification of Artin groups whose presentation graphs are trees. In particular, any two right-angled...
متن کاملQuasi-isometric Classification of Graph Manifolds Groups
We show that the fundamental groups of any two closed irreducible non-geometric graph-manifolds are quasi-isometric. This answers a question of Kapovich and Leeb. We also classify the quasi-isometry types of fundamental groups of graph-manifolds with boundary in terms of certain finite two-colored graphs. A corollary is a quasi-isometry classification of Artin groups whose presentation graphs a...
متن کاملAnti-trees and right-angled Artin subgroups of braid groups
We prove that an arbitrary right-angled Artin group G admits a quasi-isometric group embedding into a right-angled Artin group defined by the opposite graph of a tree. Consequently, G admits quasi-isometric group embeddings into a pure braid group and into the area-preserving diffeomorphism groups of the 2–disk and the 2–sphere, answering questions due to Crisp–Wiest and M. Kapovich. Another co...
متن کامل1 4 A ug 2 00 7 THE ASYMPTOTIC GEOMETRY OF RIGHT - ANGLED ARTIN GROUPS , I
We study atomic right-angled Artin groups – those whose defining graph has no cycles of length ≤ 4, and no separating vertices, separating edges, or separating vertex stars. We show that these groups are not quasi-isometrically rigid, but that an intermediate form of rigidity does hold. We deduce from this that two atomic groups are quasi-isometric iff they are isomorphic.
متن کامل1 4 A ug 2 00 7 THE ASYMPTOTIC GEOMETRY OF RIGHT - ANGLED ARTIN GROUPS
We study atomic right-angled Artin groups – those whose defining graph has no cycles of length ≤ 4, and no separating vertices, separating edges, or separating vertex stars. We show that these groups are not quasi-isometrically rigid, but that an intermediate form of rigidity does hold. We deduce from this that two atomic groups are quasi-isometric iff they are isomorphic.
متن کامل