On Canonical Modules of Toric Face Rings

نویسنده

  • BOGDAN ICHIM
چکیده

Generalizing the concepts of Stanley–Reisner and affine monoid algebras, one can associate to a rational pointed fan Σ in Rd the Zd-graded toric face ring K[Σ]. Assuming that K[Σ] is Cohen–Macaulay, the main result of this paper is to characterize the situation when its canonical module is isomorphic to a Zd-graded ideal of K[Σ]. From this result several algebraic and combinatorial consequences are deduced in the situations where Σ may be related to a manifold with non-empty boundary, or Σ is a shellable fan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Toric Face Rings

Following a construction of Stanley we consider toric face rings associated to rational pointed fans. This class of rings is a common generalization of the concepts of Stanley–Reisner and affine monoid algebras. The main goal of this article is to unify parts of the theories of Stanley–Reisnerand affine monoid algebras. We consider (nonpure) shellable fan’s and the Cohen–Macaulay property. More...

متن کامل

Solving System of Linear Congruence Equations over some Rings by Decompositions of Modules

In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...

متن کامل

Dualizing Complex of a Toric Face Ring Ii: Non-normal Case

The notion of toric face rings generalizes both Stanley-Reisner rings and affine semigroup rings, and has been studied by Bruns, Römer, et.al. Here, we will show that, for a toric face ring R, the “graded” Matlis dual of a Cěch complex gives a dualizing complex. In the most general setting, R is not a graded ring in the usual sense. Hence technical argument is required.

متن کامل

Gröbner Bases and Betti Numbers of Monoidal Complexes

Combinatorial commutative algebra is a branch of combinatorics, discrete geometry, and commutative algebra. On the one hand, problems from combinatorics or discrete geometry are studied using techniques from commutative algebra; on the other hand, questions in combinatorics motivated various results in commutative algebra. Since the fundamental papers of Stanley (see [13] for the results) and H...

متن کامل

On n-coherent rings, n-hereditary rings and n-regular rings

We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006