Critical Motor Number for Fractional Steps of Cytoskeletal Filaments in Gliding Assays

نویسندگان

  • Xin Li
  • Reinhard Lipowsky
  • Jan Kierfeld
چکیده

In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number N of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, N(c). Because of thermal fluctuations, fractional filament steps are only detectable as long as N < N(c). The corresponding fractional filament step size is l/N where l is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be N(c) = 4, and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number N(c) depends on the elastic stalk properties and is reduced to N(c) = 3 for linear springs with a nonzero rest length. Furthermore, N(c) is shown to depend quadratically on the motor step size l. Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number N = 31. Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twirling motion of actin filaments in gliding assays with nonprocessive Myosin motors.

We present a model study of gliding assays in which actin filaments are moved by nonprocessive myosin motors. We show that even if the power stroke of the motor protein has no lateral component, the filaments will rotate around their axis while moving over the surface. Notably, the handedness of this twirling motion is opposite from that of the actin filament structure. It stems from the fact t...

متن کامل

A Micro-Macro Framework for Analyzing Steric and Hydrodynamic Interactions in Gliding Assays

Macroscopic flows of filament-motor mixtures, driven by the hydrolysis of ATP, are important to many cellular processes such as cytoplasmic streaming in Drosophila oocytes and cortical flow in the first cell division of C. elegans. Gliding assays, reduced in vitro model systems where motor proteins adsorbed onto a planar substrate bind to and move filaments, recreate largescale dynamic patterns...

متن کامل

Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites

Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filame...

متن کامل

Enhanced ordering of interacting filaments by molecular motors.

We theoretically study the cooperative behavior of cytoskeletal filaments in motility assays in which immobilized motor proteins bind the filaments to substrate surfaces and actively pull them along these surfaces. Because of the mutual exclusion of the filaments, the coupled dynamics of filaments, motor heads, and motor tails leads to a nonequilibrium phase transition which generalizes the iso...

متن کامل

A Rotary Motor Drives Flavobacterium Gliding

Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2-4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end over end, or rotate. This behavior is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012